

City of London Environmental Management Guidelines

July, 2025

Table of Contents

1. Introduction	11
1.1 The London Plan	11
1.2 First Nations Engagement & Consultation	12
1.2.1 Chippewas of the Thames First Nation	13
1.2.2 Munsee-Delaware Nation.....	13
1.2.3 Oneida Nation of the Thames	13
1.3 Guideline Document Organization	14
2. Requirements for Natural Heritage Studies.....	15
2.1 Determination of Required Studies and Processes	16
2.1.1 Process Pathways for Natural Heritage Studies	16
2.1.2 When are Natural Heritage Studies Required?	19
2.1.3 Subject Lands versus Study Area	21
2.1.4 Process for Stand-alone Subject Lands Status Reports (SLSR) and Environmental Impact Studies (EIS).....	22
2.1.5 Currency of Natural Heritage Study Data and Updates to EIS at Draft Plan Renewal	22
2.2 Purpose and Objectives of Natural Heritage Studies	23
2.2.1 Subject Lands Status Reports (SLSR).....	23
2.2.2 Environmental Impact Study (EIS)	24
2.2.3 Environmental Management Plan (EMP).....	26
2.3 Environmental Impact Study Types	26
2.3.1 Focused EIS	27
2.3.2 Environmental Impact Studies for Infrastructure Projects	29
2.4 Natural Heritage Study Scoping Pathways	29
2.4.1 Natural Heritage Study Scoping Process	31
2.5 Natural Heritage Study Components and Reporting Requirements.....	32
2.5.1 Overview of the Natural Heritage Study Components.....	33
2.5.2 SLSR and EIS Report Requirements for Study Completeness	36
3. Evaluation of Significance and Ecological Function	52
3.1 Significant Woodlands and Woodlands.....	56
3.1.1 Policy and Context	56
3.1.2 Significant Woodland Evaluation Criteria	57
3.2 Environmentally Significant Areas (ESA)	72
3.2.1 City of London Subwatershed Regions Policy and Context ..	72
3.2.2 Environmentally Significant Areas (ESA) Evaluation Criteria	75

3.3	Provincially Significant Wetlands, Wetlands and Unevaluated Wetlands.....	83
3.4	Significant Wildlife Habitat (SWH).....	85
3.5	Significant Valleylands and Valleylands.....	85
4.	Boundary Delineation of Natural Heritage Features and Areas	87
4.1	Policy Context and General Guidance	88
4.2	Wetland Feature, Wetland and Provincially Significant Wetland (PSW) Delineation	89
4.3	Woodland Feature, Significant Woodland and Woodland Delineation	90
4.4	Valleyland Feature and Significant Valleyland Delineation	91
4.5	Significant Wildlife Habitat (SWH) Feature Delineation.....	92
4.6	Environmentally Significant Areas (ESA) Delineation	93
4.7	Unevaluated and Other Vegetation Patches.....	94
4.8	Boundary Delineation Guidelines.....	94
5.	Determining Ecological Buffers.....	107
5.1	Definition and Purpose of an Ecological Buffer.....	107
5.2	Approach	108
5.3	Ecological Buffer Determination Process.....	109
5.3.1	Step 1 – Determine feature to be protected, delineate boundaries and determine potential impacts.....	109
5.3.2	Step 2 – Apply Minimum Ecological Buffer Widths.....	112
5.3.3	Step 3 – Determination of site-specific Ecological Buffer widths.....	114
5.3.4	Step 4 – Ecological Buffer Restoration and Enhancement..	117
5.4	Permitted Uses within an Ecological Buffer	119
6.	Ecological Replacement and Compensation.....	122
6.1	Context and Process.....	123
6.1.1	Policy Context	123
6.1.2	Scientific and Technical Context	124
6.2	Approval Process.....	125
6.3	Guiding Principles for Ecological Compensation	127
6.4	Ecological Replacement and Compensation Plan	127
6.5	Determining Appropriate Measures	128
6.5.1	Wetlands	129
6.5.2	Significant Woodlands and Woodlands	129
6.5.3	Other Features	129
6.6	Implementing Replacement and Compensation	130
6.6.1	Site Selection	130

6.6.2	Replicating Ecosystem Structure and Functions	131
6.6.3	Plant Selection	131
6.7	Tracking Compensation	132
7.	Environmental Management and Monitoring	133
7.1	Policy and Context.....	133
7.2	Environmental Management Plan (EMP) Requirements	134
7.2.1	Environmental Management Plan Report Requirements	136
7.2.2	Inspection and Monitoring Timeline and Responsibilities....	137
7.2.3	Pre-Construction Monitoring	138
7.2.4	Construction Inspection and Monitoring	138
7.2.5	Post-Construction Monitoring	139
8.	Glossary of Terms	143
9.	References.....	161

List of Tables

Table 2.1: Areas Requiring environmental study
 Table 2.2: Ecological components to be considered in natural heritage studies
 Table 3.1: Rare plant species presence / absence
 Table 5.1: Site-specific Ecological Buffer width determination process
 Table 5.2: Required minimum buffer widths protected natural heritage components
 Table 5.3: Criteria for the determination of variation from required minimum Ecological Buffer widths
 Table 5.4: Potential Ecological Buffer enhancement measures

List of Figures

Figure 2.1: Natural heritage studies pathways
 Figure 3.1: Natural Heritage Feature and Area subcategories
 Figure 3.2: City of London glacial geomorphology of the dominant physiographic units
 Figure 3.3: City of London Subwatershed Regions
 Figure 4.1: Legend for boundary delineation guideline Figures 4.2 through 4.9
 Figure 4.2: Guideline 1 Illustration
 Figure 4.3: Guideline 2 Illustration
 Figure 4.4: Guideline 3 Illustration
 Figure 4.5: Guideline 4 Illustration
 Figure 4.6: Guideline 5 Illustration
 Figure 4.7: Guideline 6 Illustration
 Figure 4.8: Guideline 7 Illustration
 Figure 4.9: Guideline 8 Illustration
 Figure 5.1: Illustration of an Ecological Buffer implemented for the protection of a natural heritage feature adjacent to a development

Figure 6.1: Illustration of the required approach whereby all options for avoiding and / or mitigating impacts must be explored with the City before compensation can be considered

Figure 7.1: Environmental monitoring process

List of Appendices

Appendix A – Alignment of Natural Heritage Study Steps with Planning Process

Appendix B.1 – Natural Heritage Study Scoping Checklist (NHSSC)

Appendix B.2 – Subject Lands Status Report (SLSR) Completeness Screening Checklist

Appendix B.3 – Environmental Impact Study (EIS) Completeness Screening Checklist

Appendix C – Natural Heritage Data Collection Standards

Appendix D – Significant Woodland Evaluation Form

Appendix E – Impact Assessment and Net Effects Table Template

List of Acronyms and Abbreviations

ANSI..... Areas of Natural and Scientific Interest

CFZ Critical Function Zone

CMP Conservation Master Plan

COSEWIC ... Committee on the Status of Endangered Wildlife in Canada

COSSARO .. Committee on the Status of Species at Risk in Ontario

COTTFN..... Chippewas of the Thames First Nation

EA Environmental Assessment

ELC Ecological Land Classification

EIS Environmental Impact Study

EMG Environmental Management Guidelines

ER Environmental Review

ESA..... Environmentally Significant Areas

GIS Geographic Information System

IPR Initial Proposal Report

KCCA Kettle Creek Conservation Authority

LIO Land Information Ontario

LTVCA..... Lower Thames Valley Conservation Authority

MBCA..... Migratory Bird Convention Act

MCC Mean Coefficient of Conservatism

MDN Munsee-Delaware Nation

MECP..... Ministry of Environment, Conservation and Parks

MNRF Ministry of Natural Resources and Forestry

NHS..... Natural Heritage System

NHSSC..... Natural Heritage Study Scoping checklist

Oneida..... Oneida Nation of the Thames

OWES Ontario Wetland Evaluation System

PSW Provincially Significant Wetlands
 SAR Species at Risk
 SWH Significant Wildlife Habitat
 SLSR Subject Lands Status Report
 TRT Technical Review Team
 UTRCA Upper Thames River Conservation Authority

Please note these Environmental Management Guidelines (2021) incorporate updates to and supersede the former Environmental Management Guidelines (2007) in accordance with *The London Plan* (Policies 1432_ and 1424_). The specific locations and cross-references to the updated guidelines are summarized below.

Former Natural Heritage System Guideline (as listed in The London Plan Policy 1719)	Superseded by the Section in these Environmental Management Guidelines (2021) (as listed below)	The London Plan Policy Cross-References
<i>4. Guide to Plant Selection for Natural Heritage Areas and Buffers</i>	Key guidance included in <i>Section 5 Determining Ecological Buffers</i>	1719_
<i>5. Guideline Documents for Environmentally Significant Areas Identification, Evaluation and Boundary Delineation</i>	<i>Section 3 Evaluation of Significance and Ecological Function, Section 3.2 Environmentally Significant Areas (ESA)</i>	1367_, 1369_, 1719_
<i>6. Guidelines for Determining Setbacks and Ecological Buffers</i>	<i>Section 5 Determining Ecological Buffers</i>	1350_, 1414_, 1719_
<i>7. Guidelines for the Evaluation of Ecologically Significant Woodlands</i>	<i>Section 3 Evaluation of Significance and Ecological Function, Section 3.1 Significant Woodlands and Woodlands</i>	1340_, 1342_, 1719_
<i>8. Guidelines for the Preparation and Review of Environmental Impact Studies</i>	<i>Section 2 Requirements for Natural Heritage Studies</i>	766_, 1309_, 1322_, 1332_, 1338_, 1375_, 1380_, 1383_, 1413_, 1425_, 1719_

As part of the EMG update process from January 2024 to February 2025, edits were made to align this document with various changes in provincial planning legislation since 2021.

Acknowledgements and Commitment to Review

2021 Environmental Management Guidelines

The process for comprehensively updating the former Environmental Management Guidelines (2007) involved a two-year exercise over 2019, 2020 and 2021 that included three rounds of engagement and more than 20 meetings with various external resource groups and parties including local First Nations, nature / environmental groups, development organizations, conservation authorities, and the appropriate advisory committee (e.g., the Ecological Community Advisory Committee - formerly the Environmental and Ecological Planning Community Advisory Committee). Through this process hundreds of comments from various perspectives and disciplines were received and considered, and many were incorporated in this document.

This collaborative process facilitated a comprehensive review of and update to these guidelines, and resulted in a document that is:

- more streamlined
- clarifies how environmental planning under the City's jurisdiction is intended to be implemented, and
- aligned with the environmental policies in ***The London Plan***.

The City sincerely thanks all partners and participants for their input to date and looks forward to continuing to work together to ensure that these guidelines help implement environmental policy in the City in accordance with ***The London Plan***, while also complementing other applicable regulations, policies and guidelines at the federal, provincial and regional levels.

Special thanks to Dr. Gary Epp, Jillian deMan and many others at AECOM for undertaking the research, facilitating the engagement, and providing multiple drafts of and graphics for this document. Thanks also to Margot Ursic of Grounded Solutions Services Ltd. for her input.

Commitment to Review

The City recognizes that while the 2021 Environmental Management Guidelines (EMG) represent a comprehensive update to the prior guidelines, that environmental regulations, policies and guidelines change over time, and that new technical information and / or science can also be brought forward. Therefore, it is desirable and appropriate to provide a transparent process for regular refinements and updates to this document (e.g., in response to new information, opportunities to provide additional clarification, etc.).

To this end, at the end of the 2021 EMG review and update process the City committed to continuing to accept comments, engaging with its partners and considering comments received. Initially, the intent was to undertake such reviews on a biennial basis. However, it became apparent during the first such review that opening up one topic or issue can result in other related topics or issues needing to be considered, and that meaningful engagement on these topics can require significant time and effort from both the City and its resource partners. Therefore, it was agreed by the City and its resource partners that a four year review cycle would be more practical.

The City is committed to a scoped review of these EMG once every four years that focuses on priority topics and / or issues identified by the City and / or its resource partners. Furthermore, the City is committed to working collaboratively to try and address identified issues in a mutually acceptable manner that is aligned with the most current applicable environmental regulations, policies and guidance, and with careful consideration for current and applicable technical guidance and science.

2021 Environmental Management Guidelines, 2025 Update

A scoped review of the 2021 EMG was undertaken between January 2024 and March 2025. Key updates and refinements to the EMG undertaken as part of this process are outlined in **Table A.1** below.

Table A.1: Overview of key updates to the 2021 Environmental Management Guidelines (EMG) contained in the 2025 Update

EMG Component(s)	Key updates	Date of update completion
Various	<p>Updates to reflect changes in provincial planning and environmental policy related to: OWES (MNRF, 2022); O. Reg. 159/21 changes to the <i>Conservation Authorities Act</i>, the <i>Provincial Planning Statement</i> (MMAH, 2024); and Bill 185, <i>Cutting Red Tape to Build More Homes Act</i> (2024).</p> <p>Minor and housekeeping edits (e.g., to correct typos and grammatical errors, correct paragraph breaks, clarify language, etc.) and to address comments from the City's Legal team.</p>	March 2025
Section 2, Section 8, Appendix A, Appendix B.1, Appendix B.2, Appendix B.3, Appendix C, Appendix E	Updates to: (a) align with the provincial changes to the planning pre-consultation processes, (b) clarify when a Subject Lands Study Report (SLSR) may be required as a stand-alone study, (c) outline the process and required components for a SLSR and an Environmental Impact Study (EIS) to be considered complete, and (d) clarify that once an EIS is accepted as part of an approved planning application that an Environmental Management Plan (EMP) can serve as the document to carry forward EIS recommendations and ensure they are implemented and, if needed, refined.	March 2025
Section 3, Appendix D	Updates to the Significant Woodland evaluation criteria to clarify and simplify their application.	March 2025
Section 4	<p>Updates to the boundary delineation guidelines for natural features to remove the term "patch" and replace it with "feature" to clarify the application of the guidelines to specific features, except for delineation of Environmentally Significant Areas (ESA) which generally include feature clusters and potentially other natural areas.</p> <p>Updates to clarify which vegetation types are included in woodland features.</p>	March 2025

EMG Component(s)	Key updates	Date of update completion
Section 5	Reduction of minimum required Ecological Buffer for Significant Woodlands to 20 metres wide (from 30 metres wide).	March 2025
Section 7.2	Updates to confirm an EMP can serve as the document to carry forward EIS recommendations and ensure they are implemented and, if needed, refined (as in Section 2).	March 2025
Section 8	Removals, additions and refinements of various terms related to the updates above.	March 2025
Appendices	<p>Updates to Appendices A, B-1, C, D and E to align with the changes outlined above.</p> <p>Two new appendices added to provide a basis for screening completeness of natural heritage studies:</p> <ul style="list-style-type: none"> • Appendix B.2 – Subject Lands Status Report (SLSR) Completeness Screening Checklist • Appendix B.3 – Environmental Impact Study (EIS) Completeness Screening Checklist 	March 2025

1. Introduction

The following Environmental Management Guidelines (EMG) are intended to provide technical guidance in implementing the environmental policies of *The London Plan* (2016a; hereafter *The London Plan*) as they relate to the identification, delineation and protection of the Natural Heritage Features and Areas that form the City of London's Natural Heritage System (NHS). The Natural Heritage policies of *The London Plan* provide direction for the identification and protection of Natural Heritage Features and Areas and the ecological functions, processes, and linkages that they provide over the long term.

The City of London has prepared these EMG for the effective, consistent, and streamlined implementation of City policies and legislation related to the protection of the NHS. These guidelines have been developed to align with and complement the applicable federal, provincial and Conservation Authority regulations and policies, and are not meant to supplant those policies.

These guidelines have also been developed with careful consideration for relevant municipal planning processes, data sources, current scientific knowledge and best management practices. As an integral part of the environmental planning process in the City, these guidelines also include the provisions for stakeholder and First Nations engagement and consultation.

These guidelines provide an overarching framework, criteria and technical guidance for implementing environmental policies related to the NHS. It remains the responsibility of the proponent to review the full suite of applicable policies and regulations, be familiar with the current and relevant scientific and technical literature, and to work with the City and other agencies as needed (e.g., local Conservation Authorities, the Province) to ensure the policies and regulations are implemented as intended.

This document replaces the previous Environmental Management Guidelines (2007) and consolidates a series of other guideline documents as listed in 1719_ including 1340_, 1342_, 1350_, 1367_, 1369_, 1413_, and 1414_.

1.1 The London Plan

The London Plan identifies these EMG as a source of technical guidance to facilitate in the implementation of its Environmental Policies. These policies are based on the *Provincial Planning Statement* which represents minimum standards and which states: “*Within the framework of the provincial policy-led planning system, planning authorities and decision-makers may go beyond these minimum standards to address matters of importance to a specific community, unless doing so would conflict with any policy of the Provincial Planning Statement* (MMAH, 2024).

The requirement for the preparation and update of these guidelines is outlined in *The London Plan*:

The City may prepare environmental management guidelines setting out in more detail the requirements of environmental studies for development and site alteration. Environmental studies are the means by which the City establishes the precise boundaries of natural features and areas and the significant ecological functions within them. They also assess the potential impacts of development and site alteration on the Natural Heritage System and on their adjacent lands, and are required prior to the approval of development to prevent negative impacts on the Natural Heritage System, and to demonstrate that there will be no negative impacts on the natural heritage features and areas or their ecological functions. (Policy 1423)

These guidelines shall be updated as required to reflect changes to provincial policy and technical documents and to reflect improvements in scientific knowledge regarding natural features and ecological functions” (Policy 1424_).

These EMG also identify related requirements from other policies and legislation (e.g., *Provincial Planning Statement*, *Endangered Species Act*, etc.) that must be considered, where appropriate.

Additional related requirements and / or studies may be required as part of the approvals process under provincial, federal, and / or Conservation Authority's jurisdiction which will be identified by those agencies during the approvals process.

1.2 First Nations Engagement & Consultation

The City of London recognizes the importance of creating a working relationship with neighbouring First Nations communities and exploring opportunities for collaboration on common objectives, and has incorporated feedback from the following First Nation communities into the EMG update process:

- Chippewas of the Thames First Nation (COTTFN);
- Munsee-Delaware Nation (MDN); and,
- Oneida Nation of the Thames (Oneida).

Early engagement and consultation with local First Nation communities within the vicinity of the Thames River (typically 120 m) provides important insight, and information, and is critical in protecting the NHS within and beyond the City of London's boundaries. Consultation is based on whether a proposed development will have a direct or indirect effect on the Thames River.

COTTFN, MDN and Oneida have a deeply spiritual, cultural and practical reliance on the river that flows downstream of the City of London, through their communities. Early engagement and consultation will allow the communities sufficient time to assess, conduct early consultation with their respective advisory committees, and Chiefs and Councils (if required) and formulate a response back to the developer.

Proponents are expected to plan and budget for First Nations engagement and consultation. It is expected that the applicable consultation protocols will be followed for each of the First Nations being engaged.

The following subsections, provided by each of the respective First Nations, outlines the background and distinctiveness of each Nation and provides links to information about how they can and should be contacted for engagement.

1.2.1 Chippewas of the Thames First Nation

Chippewas of the Thames First Nation (COTTFN) is an Anishinabek community also known as Deshkan Ziibiing (At/On/In Antlered [Thames] River in the Ojibway language). Their community is approximately 10,800 acres in size, and is located southwest of London, Ontario. There are roughly 3000 members, with nearly 1000 members living on-reserve. Their people and ancestors have lived and travelled throughout Turtle Island (North America) for countless generations. Traditions of hunting, fishing, and storytelling endure to this day, and will be passed on for countless generations to come.

COTTFN has developed its own consultation protocol called Wiindmaagewin (to talk through) — a document and a process that will guide the development of positive working relationships. The background to the consultation process, along with Wiindmaagewin can be reviewed at the following link:

<https://www.cottfn.com/consultation/>.

1.2.2 Munsee-Delaware Nation

The traditional lands of the Munsee speaking peoples covered an area in what is now the United States, from the mouth of the Delaware River up to its source, then east to the Hudson River and then south to its mouth and including Manhattan and Staten Islands. Their language is one of the oldest of the Algonkian languages and is acknowledged by the Algonkian speaking peoples as Grandfather.

The ancestors of Munsee-Delaware Nation (MDN) moved to their present location in 1783 based on a promise from the Crown for land lost in the United States. MDN has developed its own policy for “receiving free, prior and informed consent from Munsee-Delaware Nation” outlined in the Munsee- Delaware First Nation Consultation and Accommodation Policy. General and contact information for MDN can be found at their website: <http://munseedelaware.squarespace.com/>.

1.2.3 Oneida Nation of the Thames

Established in 1840 as the ‘Oneida Settlement’, the Oneida people are known within the Iroquois Confederacy as Onyota’aka (People of the Standing Stone). Much like their ancestors, the Oneida peoples of today, maintain a deeply rooted connection to the land and to their Iroquois culture and traditions.

The Oneida Nation of the Thames (Oneida) is home to 2,172 residents and has a total membership of 6,270. Located in picturesque southwestern Ontario, the Oneida Nation Settlement borders lush and fertile agricultural lands and is nestled along the eastern shore of the Thames River 30 kilometres south of the City of London. General and

contact information for the Oneida Nation can be found at their website:
<https://oneida.on.ca/>

1.3 Guideline Document Organization

This Environmental Management Guidelines document is comprised of the following six separate, but complementary guidelines:

- Section 2: Requirements for Natural Heritage Studies (superseding 1.0 *Guidelines for the Preparation and Review of Environmental Impact Statements (EIS)*)
- Section 3: Evaluation of Significance and Ecological Function (superseding 2.0 *Data Collection Standards for Ecological Inventory* and 4.0 *Guidelines for the Evaluation of Ecologically Significant Woodlands*)
- Section 4: Boundary Delineation of Natural Heritage Features and Areas (superseding 3.0 *Guideline Documents for Environmentally Significant Areas Identification, Evaluation and Boundary Delineation*)
- Section 5: Determining Ecological Buffers (superseding 5.0 *Guidelines for Determining Setbacks and Ecological Buffers*)
- Section 6: Ecological Replacement and Compensation, and
- Section 7: Environmental Management and Monitoring.

In general, these guidelines are organized in chronological order in which they are intended to be undertaken. However, there is considerable reference between and among sections and some of the work must be undertaken iteratively to ensure that the processes are being completed efficiently and effectively. It is important to consider information from all of the guidelines outlined in this document, as well as external sources of information, as applicable.

2. Requirements for Natural Heritage Studies

The London Plan identifies five types of studies that may be required to ensure the protection of the City's Natural Heritage System (NHS). These are:

- A Conservation Master Plan (CMP) (as outlined in *The London Plan* 1421_ and 1422_): Intended to provide direction on the management of Environmentally Significant Areas (ESA) and other natural heritage areas that have been identified for long-term protection.
- A Subject Lands Status Report (SLSR) (as outlined in *The London Plan* 1425_ through 1430_): Intended for subject lands where a new or updated assessment is required to identify, evaluate the significance and confirm the boundaries of natural heritage features and areas, but the specifics of the proposed development are not yet known.
- An Environmental Impact Study (EIS) (as outlined in *The London Plan* 1431_ through 1437_): Intended for lands where development or site alteration is proposed within or adjacent to components of the Natural Heritage System to assess existing environmental conditions and identify and evaluate potential impacts, along with recommendations to avoid, minimize and mitigate those impacts.(Notably an EIS may build on and/or include the components of a SLSR or prior planning studies).
- An Environmental Management Plan (EMP) is intended to help ensure that the recommendations of the approved EIS are carried forward and implemented through the detailed design and construction phases (as described in more detail in **Section 7.2**).
- An Environmental Assessment (EA) as outlined in *The London Plan* 1438_ and 1439_): Required by the Province and/or Federal government to assess, among other things, the environmental impacts associated with different types of infrastructure projects in accordance with the applicable requirements under the *Environmental Assessment Act*. Notably an EA typically includes natural heritage studies which are typically scoped as part of the EA process (and not described in these EMG).

This section focusses primarily on the municipal processes and requirements for a SLSR and an EIS, as well as an EMP, with the relationship between these studies and other related environmental studies noted where appropriate.

Clarifying use of terms: “Natural heritage studies” versus “environmental studies”

In the City of London, there are two types of environmental studies specifically relating to Natural Heritage Features and Areas that can be required in support of development applications governed by the *Planning Act*: (1) SLSRs and (2) EISs. An EMP, as noted above and in **Section 7.2**, is typically required as follow-up to an EIS to describe how the findings, mapping and recommendations in an approved EIS are to be addressed through detailed design and project implementation (i.e., construction).

In these Environmental Management Guidelines, SLSR, EIS and EMP are specifically referred to as “natural heritage studies” as opposed to the broader term “environmental studies” which (as per *The London Plan* 1309_, 1380_, 1383_ and 1417_) may also include Conservation Master Plans (CMP), EAs, secondary plans, hydrogeological studies, and Subwatershed Plans (which are not exclusively focussed on addressing natural heritage policies, regulations and guidelines).

This chapter of the Environmental Management Guidelines describes:

- When different types of natural heritage studies are required (including when a natural heritage study may need to be updated) (**Section 2.1**)
- The purpose and objectives of natural heritage studies (**Section 2.2**)
- The types of Environmental Impact Studies (EIS) (**Section 2.3**)
- Pathways for scoping natural heritage study requirements (**Section 2.4**), and
- Natural heritage study components and reporting requirements (**Section 2.5**).

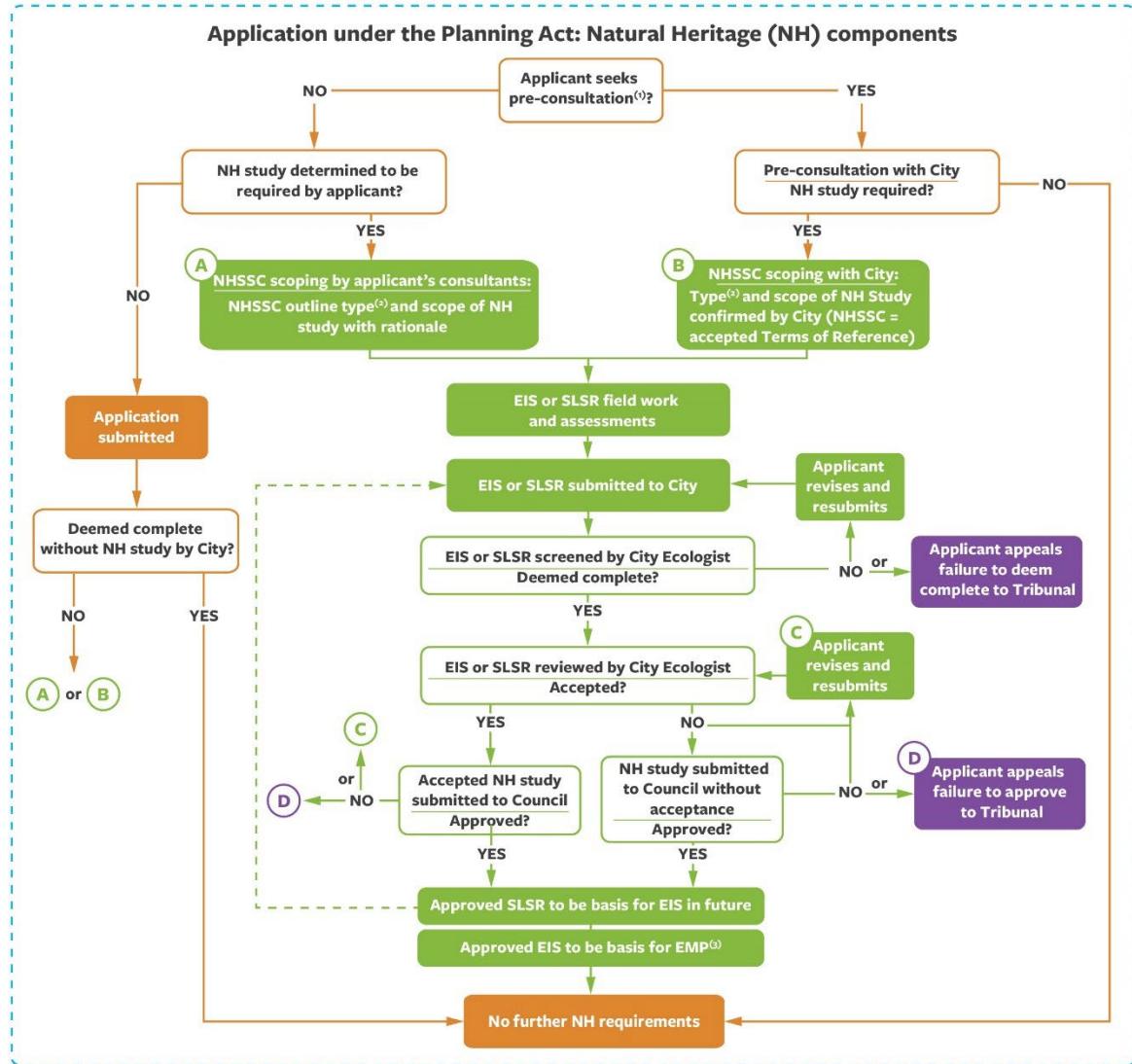
This guidance is intended primarily for development applications governed by the *Planning Act* but may also inform natural heritage study requirements as part of other types of applications and/or processes.

2.1 Determination of Required Studies and Processes

This section outlines the triggers for natural heritage studies in the City of London. In cases when a natural heritage study is required as part of a planning application, this section also outlines the pathways for proponents to get the required natural heritage study (a) deemed complete and (b) approved.

2.1.1 Process Pathways for Natural Heritage Studies

In accordance with current provincial regulations (including Bill 185, *Cutting Red Tape to Build More Homes Act*, 2024), proponents wishing to submit a planning application are not required to, but may seek, pre-consultation with the planning authority. **Figure 2.1** outlines the possible pathways as they relate to natural heritage studies. **Appendix A** shows how natural heritage studies, where required, align with different planning processes.


As illustrated in **Figure 2.1**:

- Applicants who do not seek pre-consultation may decide that no natural heritage studies are needed, or they may submit a SLSR, a Full EIS or a Scoped EIS, at their discretion.
- Applicants who seek pre-consultation and an SLSR or EIS is identified as a requirement of a complete application will have the opportunity to:
 - refine and confirm with staff the required natural heritage study components and technical studies that becomes the natural heritage study Terms of Reference (ToR) once accepted by the City (as described in **Section 2.4**), and,
 - in the case of an EIS, confirm a Focused EIS approach will be acceptable (which typically further reduces the scope of the field work required in exchange for a commitment to identify and implement minimum Ecological Buffers, as described in **Section 2.3.1**).

Why is seeking pre-consultation recommended?

Seeking pre-consultation is not required but is strongly recommended by the City as it provides an opportunity to discuss and confirm the types and scope of studies required in advance of the application being submitted. This is expected to be more efficient and cost-effective for all involved.

Figure 2.1: Natural Heritage Study Pathways

Figure 2.1: Natural heritage study pathways

The determination of the type of natural heritage studies, plans and reports that are needed to support a planning application requires conformance with these Environmental Management Guidelines (EMG).

One of the requirements of a complete SLSR or EIS (as noted in **Appendix B.2** and **Appendix B.3**, respectively), regardless of whether or not the proponent or applicant has sought pre-consultation with the City, is a completed natural heritage study scoping checklist (NHSSC). This checklist identifies what components have been completed in support of the natural heritage study being submitted and provides a concise rationale explaining why listed components that have not been considered were excluded.

While not a requirement, a NHSSC developed in consultation with and accepted by the City as a natural heritage study Terms of Reference (ToR) can substantially streamline the process (e.g., by avoiding the need to go back and undertake additional studies post-submission, or by pre-empting the completion of costly and time-consuming studies not in fact required by the City).

As illustrated in **Figure 2.1**, should the applicant not seek agreement with the City on the scope of work and submit a SLSR and EIS with and NHSSC based on the work they consider appropriate, the City may either accept the submission as complete or reject the submission as incomplete if information and materials are not included. The applicant can then either revise and re-submit the study or appeal a Notice of Incomplete Application to the Land Tribunal.

Notably, a natural heritage study may need to draw on information from other inter-related environmental and / or technical studies. These may include: hydrogeological, hydrological/ stormwater management, geotechnical, noise and vibration, air quality, etc. In some cases, most typically for hydrogeology and particularly where feature-based water balances are required, more direct coordination may be appropriate early on in the study scoping process. For example, a NHSSC may be coordinated with a hydrogeological ToR.

2.1.2 When are Natural Heritage Studies Required?

Natural heritage studies are typically required for development and infrastructure projects that are proposed wholly or partially within or adjacent to the NHS.

Planning Act applications which may require natural heritage studies (as illustrated in **Appendix A**) include, but are not limited to:

- Consents and Minor Variances
- Draft Plans of Subdivision / Condominium
- Site Plans
- Official Plan Amendments (OPA), and
- Zoning By-law Amendments (ZBA).

Natural heritage studies must assess the Natural Heritage Features and Areas on the subject lands and consider any Natural Heritage Features and Areas on the adjacent lands (see **Table 2.1**), including those:

- listed and described in *The London Plan*

- identified in the Green Space or Environmental Review (ER) Place Types on Map 1 of *The London Plan*
- identified on Map 5 of *The London Plan*, and / or
- unmapped but identified through the natural heritage study scoping process (described in more detail in **Section 2.4**) or assessment process (described in more detail in **Section 2.5**).

In all natural heritage studies, where natural hazards are identified they also need to be considered in consultation with the appropriate Conservation Authority in accordance with the *Conservation Authorities Act*. 1990.

Table 2.1 identifies the NHS component types and the extent of adjacent lands to those components whose presence typically trigger a natural heritage study. Most of these components are delineated on Map 5 and Map 1 of *The London Plan*.

Table 2.1: Areas Requiring Environmental Study including Adjacent Lands*

Component of Natural Heritage System (NHS)	Trigger Distance Requiring an Environmental Study and Area of Adjacent Lands
<ul style="list-style-type: none"> • Fish Habitat** • Habitat of Endangered and Threatened Species • Locations of Endangered and Threatened Species • Provincially Significant Wetlands (PSW) • Unevaluated Wetlands • Significant Woodlands • Significant Valleylands and Valleylands • Significant Wildlife Habitat • Areas of Natural and Scientific Interest (ANSI) • Environmentally Significant Areas (ESA) 	Within 120 metres
<ul style="list-style-type: none"> • Woodlands • Significant groundwater recharge areas, wellhead protection areas and highly vulnerable aquifers • Upland Corridors • Wetlands 	Within 30 metres
<ul style="list-style-type: none"> • Environmental Review (ER) lands 	As appropriate (i.e., within a distance appropriate to the specific components of the NHS contained on the lands)

* As per Table 13 in *The London Plan*.

** This includes aquatic habitat.

Note: In all natural heritage studies where natural hazards are identified, natural hazards and their associated setbacks also need to be considered in consultation with the appropriate Conservation Authority, including the Area of Interference surrounding wetlands (Conservation Ontario 2024).

2.1.3 Subject Lands versus Study Area

To determine if natural heritage studies are required and, if required, how they should be scoped, there must be consideration for natural heritage features and areas as well as their adjacent lands. As per *The London Plan Policy 1382* "Adjacent lands are defined as lands contiguous to a specific natural heritage feature or area where it is likely that development or site alteration would have a negative impact on the feature or area". *The London Plan* (Table 13, included in these EMG as **Table 2.1** for ease of reference) specifies that adjacent lands, which are 120 m for most NHS components and 30 m for a few others.

- **Subject lands:** The **subject lands** are typically the limits of the lands owned by the proponent, but can also be a portion of the subject lands (e.g., the limits of disturbance associated with proposed works).
- **Study area:** Natural heritage studies typically need to consider features and functions beyond the subject lands. Confirmed, unevaluated or potential natural heritage features and areas identified through the initial screening process and their adjacent lands need to be considered where they intersect with the subject lands. These features and areas are to be considered through the natural heritage study scoping process (see **Section 2.4**) as part of what can be referred to as the "study area". Major roads and other barriers or breaks can make logical study area limits.
- **Local context:** The extent of the study area will vary based on the local context but shall consider, but will typically not include, all known natural heritage features and areas within at least 1 km of the subject lands.

While in some cases the subject lands and the study area may be the same, generally when natural heritage is involved, the study area encompasses the subject lands plus:

- Natural heritage features and areas that fall within the subject lands and extend beyond the subject lands boundaries (in whole or in part)
- Natural heritage features that are outside the subject lands but whose adjacent lands fall within the subject lands boundaries, and / or
- Natural hazards regulated by the *Conservation Authorities Act* and their associated setbacks, including wetlands and their areas of interference (Conservation Ontario, 2024) on and adjacent to the subject lands.

The boundaries of the study area should be confirmed as part of the natural heritage study scoping process outlined below.

It is understood that it may only be possible to collect site-specific field data within the subject lands, and that natural heritage information related to the broader study area outside the subject lands will often be based on desktop review and other sources of available information.

When are natural heritage studies not required?

The need for new or additional natural heritage studies may be waived where the City is satisfied that no NHS components on or adjacent to the subject lands exist (with adjacency defined as per **Table 2.1**), and there are no other natural heritage features and areas or issues to be considered. Notably, the City may require a SLSR to verify that these conditions are met before confirming no further natural heritage studies or work is required.

2.1.4 Process for Stand-alone Subject Lands Status Reports (SLSR) and Environmental Impact Studies (EIS)

In most cases where a natural heritage study is required in support of a *Planning Act* application, a Full, Scoped or Focused EIS is required (see each type described in **Section 2.3**). In all cases, in the City of London, the first part of an EIS includes the same components as a SLSR (i.e., assessment of the physical and natural environment, evaluation of natural feature and area significance) (as outlined in **Section 2.5.1**).

However, in some cases the SLSR components (i.e., just the first part of an EIS) may be required in a stand-alone report. For example, when an Official Plan amendment is proposed in an area where natural heritage features and/or areas require a new or updated assessment, but the specifics of the proposed development are not yet known, a stand-alone SLSR may be required.

The processes for submission, review and approval of a stand-alone SLSR or an EIS (including optional pre-consultation at the proponent's discretion) are illustrated in **Figure 2.1**. In either case, an applicant may seek pre-consultation with the City to confirm the type and scope of natural heritage study required, or may choose to determine this independently with their ecological consultant.

As illustrated in **Figure 2.1**, where submitted as a stand-alone report as part of a complete planning application, a SLSR shall be (a) screened for completeness (see screening checklist in **Appendix B.2**) and, once deemed complete, (b) either accepted or rejected by the City Ecologist based on if, in their professional opinion, it complies with the applicable policies and guidelines.

As also illustrated in Figure 2.1, where an EIS (including SLSR components) is submitted as part of a complete planning application, it shall be (a) screened for completeness (see Appendix B.3) and, once deemed complete, (b) accepted or rejected by the City Ecologist based on if, in their professional opinion, it complies with the applicable policies and guidelines.

2.1.5 Currency of Natural Heritage Study Data and Updates to EIS at Draft Plan Renewal

Site-specific data and field work for a SLSR or an EIS is generally considered "current" for a period of up to five (5) years. Therefore, a SLSR or an EIS that is based on field and / or desktop studies that older than five (5) years may, at the City's discretion, need to be updated or redone.

For convenience and keeping the development approvals process streamlined, the renewal of an EIS tied to a draft approved subdivision can be updated with an extension of the draft plan, provided the extension occurs within six (6) years of draft approval. This is consistent with the current practice where draft plan approvals lapse after four (4) years and extensions can be considered by Council provided the draft plan remains consistent with the in-force policies.

To align with this process, in cases where draft plan extensions are being sought using an approved EIS that is older than five (5) years, the EIS can be updated with an extension of the draft plan, provided the extension occurs within six (6) years of draft approval. Alternately, depending on the type and scope of the updates required, a new or an updated EMP (see **Section 7.2**) may be required instead of an updated EIS.

All update requirements should be scoped with City staff and any relevant agencies. In the case of an updated EIS, the updated document should focus only on elements of the EIS related to recommendations that are still being or remain to be implemented. For example, the scope of the review could be a confirmation of updates to the status of Species at Risk (SAR) habitat, status of enhancements to protections for existing NHS Features and / or Areas, and / or other elements that have been discovered through the detailed design process.

2.2 Purpose and Objectives of Natural Heritage Studies

The following sub-sections outline the purpose and objectives of a SLSR (**Section 2.2.1**), an EIS (**Section 2.2.2**) and an EMP (**Section 2.2.3**).

2.2.1 Subject Lands Status Reports (SLSR)

Consistent with *The London Plan* policies 1425 to 1428, a SLSR shall provide an assessment of natural heritage features and areas, and their ecological functions, on the subject lands with consideration for natural heritage features and areas in the broader study area including, but not limited to:

- those areas included in the Green Space or Environmental Review (ER) Place Types on Map 1 (*The London Plan*)
- any components of the NHS identified or delineated on Map 5 (*The London Plan*), and
- any unmapped natural features or areas identified through the scoping or assessment process.

The purpose of a SLSR is to assess subject lands where a new or updated assessment is required to identify, evaluate the significance and confirm the boundaries of natural heritage features and areas, but the specifics of the proposed development are not yet known.

This information may be used to inform refinements or updates to the applicable land use designation(s) on the subject lands.

The objectives of a SLSR are to:

1. Confirm, map and delineate the natural heritage features and areas (including cultural communities)¹ on the subject lands (with regard for natural heritage features and areas on adjacent lands);
2. Evaluate the significance of the natural heritage features and areas on the subject lands, and their ecological functions, in accordance with the applicable regulations, policies and guidance;
3. Determine which, if any, of these features and areas satisfy the criteria for one or more components of the NHS in London; and
4. Identify any natural hazards (and their associated setbacks) and areas regulated by the appropriate Conservation Authority, including areas of interference associated with wetlands (Conservation Ontario 2024); and
5. Make preliminary recommendations for protection of the NHS components and natural hazards on the subject lands in accordance with the applicable environmental regulations, policies and guidelines.

A SLSR may be scoped with the City and in consultation with relevant agencies (as outlined in **Section 2.4**), at the proponent's discretion (see **Figure 2.1**).

The SLSR shall include a site-specific NHSSC (see template in **Appendix B.1**) and may require technical information from other disciplines (e.g., geotechnical, hydrogeology) to inform the assessment of natural heritage features and areas and their ecological functions.

In all cases, information and analyses within a SLSR may be carried forward into an EIS, as appropriate. As shown in **Figure 2.1**, a proponent may choose to submit a SLSR that addresses existing natural heritage conditions with or without pre-consultation with the City and relevant agencies, and / or as a stand-alone document in and of its own right.

A SLSR that is considered complete (see **Appendix B.2**) and accepted by the City Ecologist will be recommended for approval as part of a planning application.

2.2.2 Environmental Impact Study (EIS)

An EIS is required where development or site alteration is proposed within, or adjacent to, components of the City of London's NHS. Consistent with *The London Plan* policies 1431 to 1437, an EIS is required to determine whether, or the extent to which, development may be permitted in areas within, or adjacent to, specific components of the NHS (see **Table 2.1**). As noted above, an EIS includes and builds on the natural heritage assessment and evaluation work associated with a SLSR to include an impact assessment and mitigation measures related to the proposed development (see **Section 2.5.1**).

¹ Assessments of NH features and areas are to consider all Community Series types under the Ecological Land Classification (ELC) system for southern Ontario (as per Lee *et al.*, 1998 or its successor) including cultural communities.

The EIS shall confirm and, where required, refine natural heritage features and areas on the subject lands with consideration for natural heritage features and areas in the broader study area including, but not limited to:

- those areas included in the Green Space or Environmental Review (ER) Place Types on Map 1 (*The London Plan*)
- any components of the NHS identified or delineated on Map 5 (*The London Plan*), and
- any unmapped features identified through the scoping and / or assessment process.

The purpose of an EIS is to demonstrate that there will be no net negative impacts to the NHS Features and Areas, including their ecological functions as a result of the proposed development or project works. This is to be achieved by:

- integrating or completing assessments that confirm the NHS components on the subject lands; and
- providing recommendations for avoidance of impacts and mitigation of unavoidable impacts, (e.g., including environmental management strategies, monitoring requirements and / or other measures to protect NHS Features and Areas, and their ecological functions before, during and following construction).

The objectives of an EIS are to:

1. Undertake or build on the site-specific assessments, mapping, and evaluation completed as part of a SLSR (or comparable study or analysis);
2. Confirm, and potentially refine, the identified NHS components on the subject lands, including Ecological Buffers as well as any natural hazards;
3. Have consideration for natural heritage features and areas in the adjacent lands, including identified NHS components and/or natural hazards, including any applicable Ecological Buffers and/or natural hazard setbacks that may extend onto the subject lands;
4. Assess the anticipated impacts of the proposed development on the NHS Features and Areas, and their ecological functions, including natural hazards;
5. Prescribe avoidance and mitigation measures to ensure that the development does not negatively impact the identified natural heritage features, natural hazards or ecological functions;
6. Have regard for the ecosystem framework including specific environmental targets contained in Subwatershed Plans or any other relevant Plans; and
7. Summarize all measures to maintain the natural heritage features and areas, or their ecological functions, and manage natural hazards in accordance with the applicable policies and regulations.

An EIS may be scoped with the City and in consultation with relevant agencies (as outlined in **Section 2.4**) at the proponent's discretion (see **Figure 2.1**). The EIS shall include a site-specific NHSSC (see template in **Appendix B.1**).

In many cases, an EIS should be completed in conjunction with complimentary studies (e.g., hydrogeological assessment), so that the results of each report can inform the other and develop a holistic approach to guide the EMP.

An EIS that is considered complete (see **Appendix B.3**) and accepted by the City Ecologist will be recommended for approval as part of a planning application.

2.2.3 Environmental Management Plan (EMP)

The primary purpose of an EMP is to serve as a concise reference guide that summarizes the implementation components related to natural heritage and environmental protections outlined in the approved EIS, to help ensure that the approved EIS recommendations are carried forward and implemented at detailed design as approved and in accordance with the applicable environmental policies, regulations and guidelines.

A primary deliverable of an EIS is a section with environmental management recommendations (as outlined in **Section 2.5**). Once the EIS is approved by the City, the environmental management recommendations can be extracted along with any other relevant detailed design information (e.g., design drawings, landscape and restoration plans, stormwater management and grading plans, etc.) or other relevant studies (e.g., water balance assessments, arborist reports, etc.) to form a stand-alone Environmental Management Plan (EMP) identifying how the project will achieve NHS protection, restoration, conservation, and mitigation, including compensation where applicable. Once the EIS is approved, an EMP will be required as the reference document to ensure the EIS recommendations are implemented as approved.

A stand-alone EMP may be included as part of an approved EIS (e.g., as an appendix) but will typically be required as a stand-alone document following approval of the planning application and submitted as part of the next steps in the planning process (e.g., Focused Design Studies, Site Plan, etc., as shown in **Appendix A**).

Notably, an EMP does not replace an EIS, but must include and align with recommendations from an EIS accepted by the City as part of an approved planning application (as illustrated in **Figure 2.1**).

More details on the requirements of an EMP are outlined in **Section 7.2**.

2.3 Environmental Impact Study Types

The three different types of EIS that may be required by the City are, as follows:

- a) **A Full EIS:** For sites with little to no existing information. All applicable aquatic, wetland assessment and terrestrial studies over multiple seasons are required. For a Full EIS, most of the boxes in the NHSSC (see **Appendix B.1**) should be checked off.
- b) **A Scoped EIS:** For sites with little some existing information. The applicable aquatic and / or wetland assessment and / or terrestrial studies are typically required, with seasonal requirements scoped to reflect the species known or anticipated in the study area based on existing information. For a Scoped EIS, the number boxes checked off in the NHSSC (see **Appendix B.1**) should be determined based on consideration of both the site-specific context and the proposed development.

- c) **A Focused EIS:** Will allow for many of the typical aquatic and / or wetland assessment and / or terrestrial studies required as part of a Scoped EIS to be waived if the proponent commits to providing the minimum Ecological Buffers (as per **Table 5.2**) in conjunction with other mitigation measures (to be identified through the EIS) that together are able to demonstrate no net negative impacts to the NHS components in relation to the proposed development. For a Focused EIS, the number boxes checked off in the NHSSC (see **Appendix B.1**) are generally limited.

Although in some cases a Full EIS is warranted, in most cases for site-specific development proposals a Scoped EIS will be required. The requirements for a Scoped EIS can vary from relatively simple (e.g., a site with limited Natural Heritage Features and Areas which only requires a SAR screening and impact assessment) to fairly complex (e.g., a site with woodland features and wetland features adjacent to a valleyland feature requiring data collection for and assessment of these features as well as screening for SWH, habitat of Threatened and Endangered species and an accompanying water balance study).

As illustrated in **Figure 2-1**, all types of EIS may be scoped with or without pre-consultation with the City, at the proponent's discretion, although pre-consultation is recommended (as outlined in **Section 2.4**) to streamline the approvals process.

A Focused EIS may only be accepted by the City Ecologist under specified circumstances as outlined in **Section 2.3.1**. Confirming the City is supportive of this approach in advance of undertaking the work and submitting this type of natural heritage study is recommended to pre-empt possible delays related to the submission being rejected as incomplete and additional studies being required. Notably, if zoning cannot implement the minimum buffer requirements in Table 5-2 due to ownership, phasing or other project related constraints, this approach study type will not be considered.

An EIS may also be required through an EA process, as noted in **Section 2.3.2**.

2.3.1 Focused EIS

The Focused EIS process and report requirements offer the possibility of meeting the policy and application requirements with an abbreviated submission, where determined to be appropriate. A Focused EIS allows for some of the typical aquatic and / or wetland assessment and / or terrestrial studies required as part of a Scoped EIS to be waived in cases where the proponent is committing to provide the minimum Ecological Buffers (as per **Table 5.2**) in conjunction with other mitigation measures to protect all NHS Features and Areas associated with the subject lands, and as a result of this approach, can demonstrate no net negative impacts to the NHS in relation to the proposed development.

Notably, the desire to submit a Focused EIS can be at the proponent's behest but it is recommended that proponents obtain in principle agreement from the City prior to preparing this type of EIS.

A Focused EIS may be considered by the City for simpler applications such as:

- subject lands associated with NHS components that are already well defined (e.g., redevelopment adjacent to an existing NHS Feature already characterized through previous studies completed); and / or,
- study areas that are of limited complexity (e.g., an isolated upland Significant Woodland, as opposed to a Significant Woodland containing Wetlands adjacent to a Significant Valleyland).

In order for a Focused EIS to be considered by the City, Ecological Buffers to the NHS Features or Areas must meet or exceed the City's minimum Ecological Buffer requirements as shown in **Table 5.2** and also include mitigation requirements if stipulated by the City, intended to help ensure Ecological Buffer effectiveness (e.g., fencing without gates at the development limit, naturalization).

A Focused EIS shall include:

- A description of the land use and biophysical context of the subject lands and study area
- A description of the Natural Heritage Features and Areas in the study area
- Staked limits (see **Section 4**) for features on the subject lands, and an assessment of their significance based on the available information (see **Section 3** and **Appendix D**)
- Mapping and a description of the proposed Ecological Buffers, including any proposed enhancements (see **Section 5**)
- A conceptual drawing and a description of the proposed development
- A description of the proposed servicing and other amenities potentially associated with the development
- A commitment that the proposal will not require any refinements to the Ecological Buffers. For example, if zoning cannot implement the minimum buffer requirements on the subject lands due to ownership, phasing or other project relate constraints, this study type will not be considered.
- An outline of the type(s) and scope of the enhancements and monitoring as part of the mitigation, and
- An assessment that demonstrates no net negative impacts to the identified NHS components (see **Appendix E**) are anticipated in relation to the proposed development.

The specific requirements, including the associated mapping, desktop analyses and field studies, are to be confirmed at either natural heritage study scoping meeting or as part of the review of study completeness (see **Figure 2.1** and **Section 2.4**). All provincial and federal legislative requirements are still applicable.

The timing of a Focused EIS must align with the approvals process, with the report submitted and approved in principle prior to Draft Plan approval, and then the details of the measures approved (e.g., fencing, naturalization, etc.) submitted in conjunction with focused design studies and / or engineering drawings, as outlined in **Appendix A**.

Details related to the proposed enhancements and related ecological monitoring may be finalized during later project stages as part of an Environmental Management Plan (EMP) (see **Section 2.2.3**), but the type(s) and scope of the enhancements and

monitoring shall be agreed upon and outlined in the Focused EIS prior to Draft Plan approval.

2.3.2 Environmental Impact Studies for Infrastructure Projects

As per policies set out in *The London Plan* (Policy 1395_), new infrastructure should generally not be located within the NHS, but new or infrastructure upgrades / expansions may be permitted within the NHS where it is clearly demonstrated through an EA or comparable City-led process under the *Environmental Assessment Act*, that it is the preferred alternative for the location of the infrastructure.

In addition, as per policies set out in *The London Plan* (Policy 1397_), where new or expansions to existing infrastructure is proposed, an EIS is required as part of the EA process. The EIS shall (a) confirm no significant features are anticipated to be impacted such they lose their significance and (b) further assess other potential impacts, identify mitigation measures, and determine appropriate compensatory mitigation, if required. Any alternative where the impacts of the proposed works as identified in the EIS would result in the loss of the ecological features or functions of the component of the NHS affected by the proposed works, such that the Natural Heritage Feature would no longer be determined to be significant, shall not be permitted.

The Natural Environment and EIS component of an EA are to be scoped and completed in accordance with these EMG. This includes a requirement for an EMP as part of the detailed design for an infrastructure project where there are expected to be impacts to any NHS Features or Areas.

2.4 Natural Heritage Study Scoping Pathways

As noted in **Section 2.1.1**, a proponent wishing to submit a planning application to the City may request pre-consultation with the City to confirm and refine the types and scope of studies required, or they may complete the studies they expect will be required without pre-consultation.

With respect to natural heritage studies, there are two overarching pathways, as illustrated in **Figure 2.1**:

1. Applicants who do not seek pre-consultation may decide that no natural heritage studies are needed and may submit an application under the *Planning Act* without natural heritage studies. If upon submission the City determines that a natural heritage study was in fact required, the application will be deemed incomplete. The applicant can then choose to complete and submit a SLSR, or an EIS without pre-consultation, or engage with the City in a natural heritage study scoping exercise (as outlined in the sub-sections below) prior to submitting their natural heritage study.
 - Note that including a completed NHSSC (template provided in **Appendix B.1**) to indicate which natural heritage study components and technical studies have been completed as part of the natural heritage study submission is required to streamline the process.

- Also note that on subject lands where natural heritage feature boundaries need to be verified and/or refined that these boundaries may need to be confirmed in the field with a City Ecologist.
- 2. Applicants who seek pre-consultation and require a natural heritage study as part of a complete application, will have an opportunity to:
 - confirm the types of natural heritage field studies and assessments required (to be documented in a NHSSC, which becomes the accepted Terms of Reference);
 - request a Focused EIS and confirm if this approach will be acceptable; and,
 - request a site visit with City Ecologists to confirm natural heritage feature boundaries.

A SLSR or an EIS that includes a NHSSC that has been accepted by the City as the Terms of Reference (ToR) for the given natural heritage study through a pre-consultation process is more likely to be considered complete.

Following the determination of the type of environmental study required, scoping of the study requirements must be completed (by the proponent independently or in consultation with the City). Study scoping ensures that the proponent, the City of London, relevant agencies, and the applicable City Advisory Committees agree to the required investigations, assessments and documentation.

Where a natural heritage study scoping is requested as part of an optional pre-consultation it shall include the following and be led by the applicant / proponent and / or their authorized representative(s), as outlined in **Section 2.3.1**:

- Preconsultation to confirm the study area and determine the type of environmental study(ies) anticipated to be required (see **Section 2.1**)
Completion of a Draft natural heritage Study Scoping Checklist (NHSSC) (see **Section 2.4.1** and **Appendix B.1**)
- A natural heritage study scoping meeting, which may be combined with or separate from the overall application pre-consultation (if requested by the proponent) (see **Section 2.4.1**), and,
- Finalizing the NHSSC as the natural heritage study ToR (see **Section 2.4.1**).

Qualifications of SLSR and EIS Authors

Natural heritage studies must be prepared by one or more qualified professional(s), including at least one Ecologist, with a good working knowledge and understanding of (a) the applicable environmental regulations, policies and guidelines, (b) natural heritage feature and area screening, assessment and evaluation, and (c) biological, ecological and/or environmental functions and processes.

Depending on the types of Natural Heritage Features and Areas being considered, in addition to an Ecologist, other professionals with the appropriate areas of expertise and qualifications may need to be involved in preparation of the natural heritage study(ies) (e.g., Aquatic Biologist, Arborist, Botanist, Forester, Fluvial Geomorphologist).

In addition, natural heritage studies often require the consideration of information from other disciplines (e.g., planning, hydrogeology, engineering, landscape design).

Therefore, the professionals preparing the natural heritage studies may also need to consider and integrate information from other disciplines.

Notably, some types of environmental studies require specific certifications and/or training. The City reserves the right to request confirmation and / or documentation of such certifications and / or training.

2.4.1 Natural Heritage Study Scoping Process

A NHSSC is required as an appendix to any natural heritage study submitted, irrespective of whether it has been completed in consultation with the City Ecologist or not.

Why have a NHSSC?

A NHSSC is a useful tool for determining and confirming the scope of the field work and assessments required to inform a natural heritage study, whether it is for the Natural Environment component of an Environmental Assessment (EA) for an infrastructure project, a Subject Lands Status Report (SLSR) or an Environmental Impact Study (EIS) for a land development application.

Appendix B.1 provides a template for a NHSSC. The completed NHSSC must be included as an appendix in the natural heritage study, and where certain study components and/or types of field investigations are not checked off (i.e., being excluded), a concise rationale is required.

Why request a natural heritage study scoping meeting?

A NHSSC that is developed through (optional) study scoping meeting and supported by the City Ecologist will constitute the accepted Terms of Reference (ToR) for the natural heritage study. Having an accepted ToR ensures that the City, the proponent and other technical disciplines that may be involved all understand and agree to the scope of field work and assessments required to inform the study.

If the proponent (or their authorized representative(s)) requests a natural heritage study scoping meeting, they should:

- prepare and submit a brief summary of the proposed development (if applicable), a map that identifies the study area, and a draft NHSSC;
- set up a natural heritage study scoping meeting (typically a virtual meeting) on a date and at a time when all the Technical Review Team (TRT) can attend;
- send a request to the City of London to invite the applicable advisory committee members and / or a First Nations representative, if appropriate, and
- circulate the information above to the TRT prior to the natural heritage study scoping meeting.

The scoping meeting should be held by the proponent, their qualified professional(s) (e.g., an Ecologist) and the Technical Review Team (TRT). Typically, the TRT will include a City Ecologist and the City's Planner or Project Manager for the file, a representative from the local Conservation Authority (if appropriate), a representative from the City's applicable City Advisory Committees, and, where applicable, a First Nations community representative. Other TRT members may include professionals from other related disciplines, such as the proponent's and the City's Hydrogeologists.

During the scoping meeting the attendees should discuss and review the draft NHSSC. The limits of the study area, the scope of the study investigations, the required evaluations and assessments, considerations for avoidance, mitigation and compensation, and required documentation and coordination with other studies / disciplines, where required, can be discussed and, where possible, agreed to. The City may provide comments on the draft NHSSC.

The City Ecologist may also request a site visit, including TRT members, as part of the scoping process if it is determined that a site visit would inform the study scoping.

Once all comments regarding the draft NHSSC have been received by the proponent, the NHSSC may be finalized and accepted by the City of London. If the NHSSC is accepted by the City Ecologist, they will send written confirmation (via e-mail or letter) to the proponent and the scoping meeting attendees.

In cases where field investigations are time-sensitive, the proponent may choose to initiate investigations prior to drafting or finalization of the NHSSC. However, conducting investigations prior to the NHSSC acceptance is done at the proponent's risk should the investigations conducted not meet the finalized NHSSC requirements.

2.5 Natural Heritage Study Components and Reporting Requirements

While the level of effort required to undertake a SLSR and / or EIS may vary significantly, they both require a background information review, desktop assessments and field verification and / or investigations.

As outlined in **Section 2.5.1.** a comprehensive background review of existing reports, atlases, information centers, databases, etc. is an important first step in establishing an understanding of the environmental conditions of a project site. Agency, First Nations, stakeholder and environmental organization consultation and / or engagement is an integral part of the background review and should include information requests for the study.

As also noted in **Section 2.5.1**, in some cases, original field investigations may not be required if recent (see **Section 2.1.5** for what is considered a “current” natural heritage study) investigations have been completed to an appropriate level of detail, or if there are no Natural Heritage Features and Areas within or adjacent to the subject lands. In such cases a site visit to confirm the absence of features and other conditions requiring assessment should be completed.

In cases where field investigations are required, a site visit with a City Ecologist, including feature staking if and when appropriate, is also standard, as outlined in more detail below.

Section 2.5.1 provides an overview of the natural heritage study components, outlining which components are typically found in a stand alone SLSR versus an EIS, which typically would include all of the components.

Section 2.5.2 provides more information about the required reporting format and technical information and material requirements for natural heritage studies, also noting which are required in a stand alone SLSR versus an EIS (which would typically include all of the components).

Further details regarding field investigation requirements are provided in the City of London’s **Data Collection Standards** found in **Appendix C**.

2.5.1 Overview of the Natural Heritage Study Components

The following 10 steps outline the typical steps in the process for completing any type of EIS.

A stand alone SLSR typically requires completion of Steps 1 through 5, may require a preliminary Step 8, and Steps 9 and 10 will also apply.

Once an EIS is approved by the City, the EMP is based on the content in Step 8, supplemented with mapping and other information as required.

- 1. Natural Heritage Study Scoping** – A natural heritage study scoping exercise should be completed by the proponent whether or not they seek pre-consultation with the City, ideally before field investigations are initiated. The natural heritage study scoping shall follow the process and requirements as outlined in **Section 2.4** of these guidelines, including the completion of the NHSSC (as provided in **Appendix B.1**). A site visit may be requested by the proponent or the City as part of the pre-consultation process.
- 2. Background Review and Information Requests** - The proponent must complete a comprehensive review of background information to form the basis for a description of existing conditions. The background review should follow the City of London’s Data Collection Standards found in **Appendix C**, as applicable and appropriate.
- 3. Field Investigations** – Field investigations are to be completed at the appropriate times and frequencies, and include appropriate locations, in accordance with the NHSSC. Field investigations must be completed in compliance with the City of London’s Data Collection Standards found in **Appendix C**. Dates of investigations, names of investigators, conditions at the time of investigations, any variance of

methods, data sheets, and photographs, should all be recorded at the time of investigations. Quality assurance and quality control measures to verify the accuracy of the data collected should be implemented as part of the proponent's (or their consultant's) internal SLSR or EIS review process.

4. **Verification of Natural Feature Boundaries** – Natural feature boundary review and staking is often required, at the City's discretion, as part of site-specific SLSR and EIS but is not required as part of a complete application. Where such features overlap with natural hazards, the local Conservation Authority may also need to be involved. Where required, feature boundary review and staking should be completed and may need to be verified in the field with a City Ecologist as part of their review process prior to accepting a SLSR or approving an EIS. The intent of this exercise is to ensure the natural heritage constraints are accurately identified in accordance with the guidance in these EMG (see **Section 4**), so that these constraints can be carried over into other discipline assessments and plans (e.g., engineering, landscaping) as needed.
5. **Evaluation of Significance** – The evaluation of significance shall be conducted for Natural Heritage Features and Areas within the study area in accordance with the applicable federal, provincial and City of London policies. The City of London evaluation criteria, as outlined in **Section 4**, shall be applied to all unevaluated Natural Heritage Features and Areas (see **Figure 3.1**) as appropriate, and may also be applied to previously evaluated Natural Heritage Features and Areas.
The evaluation criteria to be applied to a specific natural heritage feature or subject lands should be identified in the NHSSC. In instances where a Significant Woodland Evaluation is appropriate (see **Section 3.1.2**), the evaluation shall be completed using the Significant Woodland Evaluation Form provided in **Appendix D**. However, if during the course of investigations it becomes evident that other evaluation criteria or assessments are appropriate (e.g., PSW or Wetlands, Significant Valleylands, SWH, SAR), then they shall also be applied. See **Section 3** for further guidance.
6. **Description of the Proposed Development (or Infrastructure Project)** – Any EIS must include a high-level description of the proposed development (or infrastructure project), with a focus on elements that are expected to impact the NHS.
7. **Impact and Net Effects Assessment** – The environmental impact assessment for any EIS shall identify the potential impacts that may be generated from the design and layout, the construction, and the operations of the proposed development, including consideration of the anticipated post-construction conditions.

As per the Net Effect Table template provided in **Appendix E**, the proponent should identify and assess existing conditions, including pre-existing impacts to study area Natural Heritage Features and Areas or their ecological functions prior to project initiation (as part of existing conditions), and the potential long-term and short-term impacts (e.g., construction related) of the project, including direct and indirect impacts. For each potential impact, appropriate avoidance, mitigation and / or compensation measures shall be recommended and described.

For any proposed development or works adjacent to a NHS Feature or Area, Ecological Buffers (see **Section 5**) shall be applied as required (see **Table 5.2**) as

part of the mitigation measures. The net effects of the project should then be assessed based on the anticipated net impacts after avoidance, mitigation and / or compensation measures are implemented as recommended.

If the project is anticipated to result in a net negative effect, then the proponent must include additional mitigation and / or compensation measures, or re-work the proposed project plan and / or design to minimize or avoid such effects. Any EIS must demonstrate a no net negative impact, or a net environmental benefit to the NHS.

The Province's *Natural Heritage Reference Manual* (MNRF, 2010b) provides a "Sample Checklist for Use in Assessing Impacts of Development" which can be referenced, however the proponent must consider the development activities and potential impacts on a site-specific basis as outlined in the Impact Assessment and Net Effects Table Template provided in **Appendix E**.

8. Environmental Management Recommendations – The environmental management recommendations for a proposed development or project are the primary "deliverable" of an EIS and may also be required for a SLSR. Recommendations shall be developed based on the avoidance, mitigation and / or compensation measures identified in the Impact Assessment and Net Effects Assessment. An important mitigation measure is recommending appropriate Ecological Buffers (see **Section 5**). High-level natural heritage feature replacement and / or compensation guidance is provided in **Section 6**. Another important mitigation measure is the identification of appropriate pre-, during and post-construction/ post-development monitoring (see **Section 7**). The recommendations for monitoring shall outline the monitoring objectives, time frame and protocols for each monitoring component. The EIS should also indicate if and how net environmental benefits will be achieved through the implementation of these recommendations.

These recommendations will be carried forward to provide the basis for the Environmental Management Plan (EMP), as per **Section 7.2**. As noted above, the environmental management recommendations may also be included as an appendix to an EIS, along with supporting information (e.g., mapping) to facilitate its use as a stand-alone document used to ensure the EIS recommendations are carried forward following Draft Plan or Site Plan Approval (see **Appendix A**).

- **SLSR or EIS Submission** – The proponent is to submit the SLSR or EIS to the City of London for review and comment. The SLSR or EIS and supporting appendices shall be submitted in electronic format to the City's Project File Handler. Once received, the City will confirm that the submission meets the requirements of a complete application. If the SLSR or EIS does not meet the requirements of a complete application, it will be returned to the applicant with an explanatory letter or memo explaining why the submission was not considered complete.
- If the SLSR or EIS meets the requirements of a complete application, it will be accepted by the City and distributed to the TRT for their review and comments. All comments from the TRT will be sent to the City for

consideration and forwarding to the applicant / proponent (and their natural heritage consultant).

9. SLSR or EIS Acceptance – As outlined in **Figure 2.1**, once an SLSR or EIS has been deemed complete and has been reviewed, the City Ecologist may:

- **Accept the SLSR or EIS** with no required revisions, or with minor revisions, OR
- **Refuse to accept the SLSR or EIS** (e.g., based on the comments received from the TRT, and / or based on non-conformance with *The London Plan* policies).

Acceptance or rejection of an SLSR or EIS is to be provided in written correspondence (e-mail or letter) to the proponent. An accepted natural heritage study will be recommended to other City staff and Council for approval, typically as part of a complete application.

In cases where the natural heritage study is rejected, the proponent may elect to (a) revise and resubmit the study, (b) appeal the failure to approve to the Tribunal, or (c) submit the rejected study to Council without City Ecology staff support. If the application fails to be approved by Council for reasons related to natural heritage, the proponent may choose to (a) revise and resubmit, or (b) appeal the failure to approve to the Tribunal.

Further details and the reporting requirements for the above steps are outlined in **Section 2.5.2**.

2.5.2 SLSR and EIS Report Requirements for Study Completeness

The following section outlines the format and information and material minimum standards for (a) a SLSR and (b) an EIS. As noted in **Section 2.5.1**, an EIS includes and builds on the components of a SLSR.

These components and minimum standards are considered necessary requirements to deem a natural heritage study submission complete unless otherwise indicated in a completed NHSSC (based on the NHSSC form in **Appendix B.1**) that provides a rationale for exclusion accepted by the City.

Complete checklists to be used by the City to screen a stand-alone SLSR or an EIS for completeness are provided in **Appendix B.2** and **Appendix B.3** respectively. It is understood that depending on the nature of the site and/or the proposed development and/or the type of study that some of the listed study components may not be appropriate or required.

- For example, a site without wetlands on it or in the adjacent lands would typically not require a wetland assessment.
- Another example would be where the proponent seeks pre-consultation and through the process the City has agreed to a Focussed EIS (see **Section 2.3.1**) without breeding bird or amphibian surveys as long as a SAR screening is completed.

In all cases, the rationale for excluding one or more of the components listed in **Appendix B.2** or **Appendix B.3** must be provided on a completed NHSSC form (as provided in **Appendix B.1**).

Further details describing the required content for the above report components and sections are provided below.

Figures / Mapping – Maps or figures are a critical part of any SLSR and EIS and are required to illustrate the existing conditions (e.g., topography, geology, soils, vegetation communities, watercourses, non-natural land covers) as well as the proposed development in relation to these conditions, and the locations of survey and/or monitoring stations.

Use of current air photos: In all cases, the SLSR or EIS must include at least one existing conditions map and one vegetation community map over the most current available air photo(s). Current air photos are available on the City's website, and imagery from within the previous two years must be used.

Additional and more specific requirements related to figures / maps for specific report sections are outlined in the sub-sections below.

2.5.2.1 *Title Page and Pre-Report Body Components*

Title Page - The title page shall provide basic information including the following:

- Project name and study type (i.e., SLSR, Full EIS, Scoped EIS or Focused EIS)
- Any relevant File Reference numbers and subject land's address / location
- The proponent's company name, address, and primary contact name
- The consultant's company name, address
- The date of report submission

Executive Summary - The Executive Summary for the report should provide a brief summary of the report including the purpose of the study, the subject lands and study area locations, study scoping information, overview of field investigations completed, and key study findings including identification of NHS Features and Areas, summary of potential impacts and net effects, and a summary of the environmental management recommendations.

Authors' Signature Page - A page with the names, signatures and qualifications of the principal authors of the study shall be provided. The names, signatures and qualifications of the senior reviewers should also be provided.

Table of Contents - A Table of Contents with page references should be provided for the study. This should also include a List of Figures, List of Tables, and List of Appendices.

2.5.2.2 *Introduction*

The Introduction of the study may stand as one complete section or it may be separated into several sub-sections, at the author's discretion. Regardless, the Introduction should include the following information:

Introductory Statement – The Introduction shall state the purpose of the study and identify the proponent. Since most SLSR and EIS are technical documents supporting a larger study or an application, the Introduction should reference the study or application that the SLSR or EIS is supporting.

Background – The Introduction should provide some background regarding the project and any relevant planning or studies for the subject lands that have already been completed.

Subject Lands and Study Area – The subject lands for the study shall be clearly identified with the address (or other municipal reference numbers) along with the limits of the study area and identification of any pertinent reference points (e.g., watercourses, major streets or roads, railways, etc.).

- Figure: A figure delineating the subject lands and study area boundaries and showing local streets/roads, watercourses, buildings/structures over a recent aerial photograph base must be included.
- Figure: Another figure must delineate the mapped Natural Heritage Features and Areas identified on Map 5 of *The London Plan* and any Subwatershed Plans/Studies within at least 1 km around the subject lands over a current air photo base.

Policy Context – The policy context for the SLSR or EIS should be identified in the Introduction. This should include the trigger for the EIS and the relevant policies in *The London Plan* that apply to the project/application. Other relevant federal, provincial and Conservation Authority legislation and policies should also be identified.

SLSR or EIS Scope – A subsection or paragraph shall be provided in the Introduction that summarizes the scoping process, if applicable, and some of the key aspects of the study scope. The completed NHSSC (see **Section 2.4**) must be referenced and provided in the appendices of the report.

Agencies, First Nations and Stakeholders Consultation – Consultations with government agencies, Conservation Authorities, First Nations communities, and stakeholders – if any – shall be identified and referenced as part of the Introduction. Any relevant correspondence and consultation documentation shall be provided in the Appendices.

2.5.2.3 Physical Environment

The physical environment provides key context for the Natural Heritage Features and Areas on the broader landscape and on the subject lands because of the direct interrelationship between the physical and natural environment. The description of the physical environment is, therefore, an important part of the SLSR or EIS. The physical environment section of the SLSR or EIS should include information on the following topics.

Soils and geology – Soils and the underlying geology of the study area and surrounding landscape shall be described in sufficient detail as to provide context for the ecological communities and ecosystems of the subject lands and broader study area (e.g., including adjacent lands and areas of interference associated with wetlands as appropriate, (Conservation Ontario 2024)). If a soils or geotechnical

investigation has been undertaken for the project, its findings should be summarized in this section. Potentially useful sources of information include:

- The Canadian System of Soil Classification, 3rd Edition (Soil Classification Working Group,1998)
- Pleistocene Geology of the St. Thomas Area (Dreimanis, 1964; Dreimanis,1970).
- City of London Open Data: Topographic Map Index
- University of Toronto: London (Ont) Shapefile Topos and Orthophotos 2005 to 2012 (<https://mdl.library.utoronto.ca/collections/geospatial-data/london-ont-shapefile-topos-and-orthophotos>)
- A Three-Dimensional Geological Model of the Paleozoic Bedrock of Southern Ontario (Carter *et al.*, 2019)
- Province of Ontario
 - Topographic Maps (<https://www.ontario.ca/page/topographic-maps>)
 - Surficial Geology (<https://data.ontario.ca/dataset/surficial-geology-of-southern-ontario>), and
- Map of surficial geology of southern Ontario that can be viewed in Google Earth.

At least one maps that overlaps the subject lands and study area boundaries over important base information (e.g., surficial geology, soils and topography) shall be included as part of the study.

Surface water and drainage – The surface water and drainage patterns within and adjacent to the subject lands determine the extent and characteristics of aquatic habitat features, wetlands and terrestrial vegetation communities. The watershed, subwatershed, Surface Water Features (as defined in **Section 8**) and drainage patterns for the study area shall be described in this section.

A Surface Water Features and drainage figure showing all watercourses, water bodies, wetlands, and drainage patterns shall be provided for the study area, as applicable. If a surface water or stormwater management investigation has been completed for the project the findings with regard to existing conditions should be summarized in this section of the report. Where available from other disciplines, pre- and post-development catchment boundaries and flow paths should be referenced and potentially included.

Hydrogeology – The hydrogeology of a study area is often an important determinant of the area's aquatic, wetland and / or terrestrial features and their functions. The existing hydrogeology for the study area shall be described in this section, particularly as it relates to Natural Heritage Features and Areas that depend on groundwater discharge and the depth of the shallow water table. If a hydrogeological study has been conducted for the project or as part of previous works in the area, the findings related to existing conditions shall be summarized in this section.

2.5.2.4 *Natural Environment*

As noted above, the existing condition for the natural environment section of the SLSR or EIS should be divided into four (4) main ecological system types:

- (1) aquatic habitat and species
- (2) wetlands and species
- (3) terrestrial habitat and species, and
- (4) ecological linkages and connectivity (including animal movement corridors where appropriate).

Each of these sections may be further subdivided depending on the complexity of the study area features and the investigations required.

For each discipline within a subsection of the Natural Environment section the following shall be included.

Background Information – a summary of information obtained from the background review and information requests shall be included to provide a baseline understanding of the features. Previous studies and reports should be referenced and any data or information of particular interest to the study should be highlighted.

Methods – the methods used for the investigations for each discipline shall be detailed with reference to standard protocols used. The City of London's Data Collection Standards found in **Appendix C** provide the recommended protocols for ecological investigations. The date and time of investigations shall be provided, in Table format along with the names of field staff who conducted the surveys. Any variance with recommended protocols should also be noted in this section.

Results and Discussion – the results of the field investigations shall be presented in an organized manner by feature or area. The discussion shall include a comparison of findings from previous relevant studies with those of the current study, where applicable. Summary tables with metrics relevant to the discipline should be used wherever possible. For large data sets, spreadsheets shall be included in the appendices with summary tables included in the text where needed.

Table 2.2 provides an outline of the four main ecological system types to be addressed in the SLSR or EIS and the possible biological components to be included within each system. If no biological components with the given ecological system occur within the study area, then the system heading should be retained in the report with a single sentence stating that no biological components related to this ecological system are present within the study area (e.g., no aquatic habitat or species are present within the study area). For the specific biological components, only those for which investigations were conducted should be included.

Table 2.2: Ecological components to be considered in natural heritage studies

Category	Ecological Components
Aquatic Habitat and Species	<ul style="list-style-type: none"> • Fish and fish habitat • Benthic invertebrates • mussels • water chemistry and physical attributes • vegetation communities and plant species • breeding birds • other birds including waterfowl • amphibians • reptiles • butterflies and dragonflies / damselflies • terrestrial crayfish • mammals
Terrestrial Habitat and Species	<ul style="list-style-type: none"> • Vegetation communities and plant species • Breeding birds • Raptors, crepuscular species, colonial-nesters and other birds • Amphibians • Reptiles • Butterflies and dragonflies / damselflies • Terrestrial crayfish • Mammals (e.g., bat habitat & bats, deer congregation areas) • Seeps and springs
Wetland Features and Wetlands	<ul style="list-style-type: none"> • Provincially Significant Wetlands (PSW) • Wetlands (i.e., evaluated non-PSW) • Unevaluated wetlands
Ecological Linkages and Connectivity (Including Animal Movement Corridors)	<ul style="list-style-type: none"> • Aquatic / Lowland / Valley Corridors • Terrestrial / Upland Corridors

At a minimum the following figures shall be included in the SLSR, EIS or Natural Environment section of the EA report over the most current available air photo (see the City's website):

- Figure: Field Investigations – showing the locations of the field investigations completed
- Figure: Aquatic Habitat – showing watercourses, spawning habitat, habitat characteristics, barriers to fish passage, etc.,
- Figure: Vegetation Communities – showing the delineation of Ecological Land Classification (ELC; as per Lee *et al.*, 1998) communities

Other figures may include:

- Figure: Breeding Bird and Raptor Habitat – showing suitable habitat, nest locations, etc.
- Figure: Amphibian and Reptile Habitat – showing breeding areas, hibernacula, etc.
- Figure: Plant species – showing location(s) of one or more rare species

Notably, for species whose location data is considered sensitive, mapping should be provided to the City separately in a map clearly labelled as “confidential and for internal use only”.

2.5.2.5 *Evaluation of Significance*

The Evaluation of Significance section of the SLSR or EIS shall identify previously evaluated and recognized or identified features and species by jurisdiction: federal, provincial and local. For those features or species not previously evaluated or identified, this section shall present the evaluation of whether or not it meets the established criteria for one or more of the City's NHS components (see **Table 2.1**) and the recommended designation.

The following lists some of the potential features or categories that may apply at each jurisdictional level:

- **Federal**
 - Fish Habitat as defined under *the Fisheries Act*
 - Species at Risk (SAR) as listed under *the Species at Risk Act*
- **Provincial**
 - Provincially Significant Wetlands (PSW) – for wetland evaluations the Ontario Wetland Evaluation System (OWES) shall be used by a certified wetland evaluator. Once completed the wetland evaluation shall be submitted to the Province and the City of London. A summary of the evaluation should be included in this section of the SLSR or EIS, and a copy of the evaluation should be provided in the Appendices. See *The London Plan* policies 1330_ to 1336_.
 - Areas of Natural and Scientific Interest (ANSI) – as identified by the Province of Ontario. See *The London Plan* policies 1356_ to 1360_.
 - Significant Woodlands – see *The London Plan* policies 1337_ to 1342_ and the City of London's Woodland Evaluation Criteria in **Section 3.1.2**

- Species at Risk (SAR) as listed under the *Endangered Species Act*
- **City of London**
 - *Significant Woodlands* – see above
 - *Woodlands* (non-significant) – see *The London Plan* policy 1343_
 - *ESA and Potential ESA* – See *The London Plan* policies 1367_ to 1371_ and Section 3.2 for the *City's Guidelines for the Evaluation of Environmentally Significant Areas*
 - *Significant Wildlife Habitat* – for habitats not already evaluated, the proponent's Ecologist shall complete a Significant Wildlife Habitat Assessment in accordance with the Province's Significant Wildlife Habitat Technical Guide (MNRF, 2000) and Criteria Schedules for Ecoregion 7E (MNRF, 2015), or subsequent updates to these documents. These are provincial criteria that are approved at the municipal level. *The London Plan* policies 1352_ to 1355_ shall also be applied
 - *Significant Valleylands* – valleylands not already identified or evaluated should be evaluated in accordance with *The London Plan* policies 1347_ to 1350_
 - *Wetlands and Unevaluated Wetlands* – see *The London Plan* policies 1330_ to 1336_
 - *Upland Corridors* see *The London Plan* policies 1372_ to 1377_

Further detail regarding the evaluation of natural heritage feature significance is provided in **Section 3**.

- **Local Conservation Authorities**

Changes to the *Conservation Authorities Act*

Substantive changes to the provincial *Conservation Authorities Act* (1990) were implemented between 2022 and 2024.

In accordance with O. Reg 596/22, Conservation Authorities “shall not provide ... a municipal program or service related to reviewing and commenting on a proposal, application or other matter made under a prescribed Act” (s. 21.1.1(1.1)). This means, with respect to natural heritage, they may no longer provide advice to municipalities related to any prescribed Acts, including the *Planning Act*.

Under O. Reg. 41/24, the individual regulations which provided governance to each of the Conservation Authorities in Ontario were revoked and replaced by a single, new regulation. This regulation maintains the role of Conservation Authorities as a commenting/advisory agency on applications submitted pursuant to the *Planning Act* as it pertains to natural hazards, and as a permitting authority in its own right, regulating activities pursuant to the *Conservation Authorities Act* within wetlands, the areas of interference associated with wetlands, hazardous lands, river or stream valleys and other areas determined by the regulations (Conservation Ontario 2024).

Local Conservation Authorities having jurisdiction in the City of London (i.e., Upper Thames River Conservation Authority (UTRCA), Lower Thames Valley Conservation Authority (LTVCA) and Kettle Creek Conservation Authority (KCCA)) are required to provide mapping depicting the regulated areas within their respective jurisdictions and is to be make publicly available on their respective websites.

The local Conservation Authorities updated their policies and procedures to align with O. Reg. 41/24 over 2024.

Consultation with the appropriate Conservation Authority is required on all matters within the regulated areas including potential or confirmed wetlands, areas of interference or hazardous lands (Conservation Ontario, 2024).

At a minimum the following figures shall be included in the SLSR, EIS or Natural Environment section of the EA report:

- Figure: showing the type(s) and extent of **existing and candidate** Natural Heritage Features and Areas on Map 5 of *The London Plan* or identified as meeting the 0.5 ha Unevaluated Vegetation Patch policies (see **Figure 3.1**) on the subject lands.
- Figure: showing the type(s) and extent of **confirmed** NHS Features and Areas consistent with *The London Plan* terminology (see **Figure 3.1**) on the subject lands, including the areas (in hectares) for each NHS Feature and Area in a table within the report.
 - The final recommended Ecological Buffers shall be shown for EIS and preliminary Ecological Buffers may be shown for a SLSR in accordance with the guidance in **Section 5** (see **Table 5.2**).

2.5.2.6 *Proposed Development or Works*

In this section of the EIS the proposed development or project works shall be summarized in a manner that describes all aspects and stages of the project that may affect Natural Heritage Features and Areas, and their ecological functions. This summary should be based on, at a minimum, a Preliminary Design for the development proposal or project. This enables the recommendations from the EIS to be incorporated into the Detailed Design / Focused Design for the development application or project (see **Appendix A**).

It is expected that the Preliminary Design presented in the EIS will be a product of an iterative process wherein the design or plan presented to the City has taken into consideration avoidance and mitigation recommendations provided by the proponent's Ecologists for the project. Documentation of this iterative process should be provided where applicable.

The following information shall be included in the description of the proposed development or works:

- A description of the proposed development plan or project layout and design;
- An outline of project staging and timing;
- Proposed protection measures, including erosion and sediment control (ESC) measures in accordance with the City of London's *Design Specifications & Requirements Manual* (City of London, 2019) or successor manuals; and,
- Any proposed post-construction operations and / or maintenance.

The proposed layout and design shall be shown on a figure as an overlay depicting the site and plan over a current air photo base and include the NHS Features and Areas, and ELC communities delineated. This figure shall recommend areas for protection with their associated recommended Ecological Buffers and / or setbacks, including those related to natural hazards.

Further Preliminary Design and Detailed Design drawings and supporting documentation can be provided in the Appendices.

2.5.2.7 *Impact and Net Effects Assessment*

The Impact and Net Effects Assessment section of the report is critical to:

- a) determining whether a project can meet the test of "no negative impacts", and
- b) identify where net environmental benefits, referred to in these EMG as "positive net effects", can be achieved.

While every EIS is required to meet the no negative impacts test in accordance with the *Provincial Planning Statement* (MMAH, 2024), to help build resilience in the NHS in response to urban and climate change stressors, opportunities for net environmental benefits should also be identified through the EIS process.

The following types of anticipated impacts to components of the NHS as a result of the proposed development shall be assessed and described in this section of the EIS and may each form a subsection in the Impact and Net Effects Assessment section:

- **Existing Conditions, including Pre-existing Impacts** – The report must identify any impacts from previous or existing land uses or activities that have affected the NHS Features and Areas of the study area or their ecological functions. This provides a baseline for comparison with potential project related impacts.
- **Direct Impacts** – The potential direct impacts of a project shall be identified and described based on the proposed development plan. A figure showing the proposed development footprint (including the areal extent of associated works) overlaid on the NHS Features and Areas within the study area, and particularly the subject lands, should be provided with an indication of any areas where direct impacts are anticipated.
- **Indirect Impacts** – Anticipated indirect impacts to the NHS associated with the during and / or post-construction stages of the proposed development or infrastructure project shall be described in this section of the EIS.

For each of the above categories of impact, the source of the impact, the feature that may be affected, possible avoidance, mitigation and / or compensation measures where appropriate, and the resulting net effects should be described in detail. A summary of the impact assessment and net effects shall be provided in an Impact and Net Effects Assessment Table. **Appendix E** provides a table template for the assessment of net effects, to be used in any EIS submitted to the City of London.

Net environmental effects are considered to be those impacts that are expected to remain or are residual after the recommended avoidance, mitigation and compensation measures, as applicable, are implemented.

The following impacts shall be considered in relation to the proposed development or works:

- Changes to surface water features and / or drainage and site grading which may include pre-development, post-development and interim variations when works are adjacent to NHS Features or Areas;
- Potential impacts of project staging and / or timing (e.g., to wildlife breeding or movement);
- Details regarding construction relating to potential impacts to the NHS and / or natural hazards, including any proposed de-watering plans that depict preferred zones where discharge should be directed and potential impacts from dewatering activities (e.g., cutting off groundwater baseflow from potential receptors); and,
- Any anticipated post-construction impacts related to the proposed changes in land uses.

Through the EIS, all anticipated negative impacts should be addressed through a combination of avoidance, mitigation and compensation measures as appropriate so that the net effects are either neutral (i.e., no net effect = no measurable impact to the NHS is anticipated) or positive (i.e., positive net effect = there is a gain in the area extent and / or improvement to the quality of one or more NHS Feature / Area).

In addition to the Net Effects Assessment, the proponent should have consideration for effects of development that may increase or decrease in magnitude with a changing climate (e.g., increased flooding, drought, invasive species range shifts, etc.) and,

where feasible, identify enhancement measures to help build resilience to these stressors in the NHS. Tools may be developed or adopted by the City of London to assess anticipated climate change impacts to the NHS, and once available should be considered as part of the impact assessment process.

2.5.2.8 *Avoidance, Mitigation & Compensation*

While the Impact and Net Effects Assessment identifies avoidance, mitigation, and compensation measures that should be implemented, each of these must be developed into detailed recommendations to be carried forward into the Environmental Management Plan (see **Section 2.5.2.9** and **Section 7.2**). This section of the EIS shall carry forward the avoidance, mitigation and compensation measures identified in the previous section and elaborate on each.

Avoidance – Avoidance of potential impacts should always be considered the preferred option where feasible. As noted in the Proposed Development (**Section 2.6.6.6**) avoidance of potential impacts should be considered iteratively through collaboration between the project Planners, Engineers, Ecologists and other technical disciplines if required prior to presenting this plan to the City. This section may refer to the iterative process described in the Proposed Development Section, and / or it may propose additional avoidance measures for consideration.

Mitigation – Mitigation measures may take various forms and may apply to direct or to indirect impacts that are short-term (e.g., may occur only during the construction phase of the project) or long-term (e.g., may occur in the post development scenario). For example, during-construction impacts tend to be temporary in nature and preventable / manageable through proper construction practices, site inspections, and other standard mitigation measures. Each of these measures shall be identified and described in this section of the report.

One of the most important mitigation measures that will apply to NHS Features and Areas identified for protection is the implementation of Ecological Buffers. The identification of appropriate Ecological Buffers must follow the guidance provided in **Section 5**. In this section of the EIS, the application of the guidelines to the project and site-specific rationale should be provided.

Compensation – Compensation for impacts to, or removal of, a NHS Feature is only permitted under limited circumstances, but may be permitted in accordance with the applicable policies and, where appropriate, in consultation with agencies whose regulated areas encompass the NHS Feature in question. Where alternatives for avoidance and mitigation have been considered and compensation has been determined as an acceptable or the preferred alternative for a proposed development or project, the details of the compensation must be described in this section.

In cases where NHS Feature replacement and / or compensation is proposed, supporting figures must be included in this section of the study:

- Figure(s): Proposed “Natural Heritage System Compensation Plan” - one or more figure(s) clearly showing all of the confirmed NHS components and natural hazards in the study area, along with areas proposed for removal and areas proposed for replacement / compensation.

The following shall be considered in the identification of the proposed avoidance, mitigation and / or compensation measures:

- The applicable environmental policies and regulations;
- Seeking opportunities for avoidance first and foremost (see **Section 7**);
- Short-term protection measures related to project construction / implementation, such as erosion and sediment control (ESC) measures in accordance with the City of London's *Design Specifications & Requirements Manual* (City of London, 2019) or successor manuals;
- Long-term protection measures related to post-construction land use changes, such as Ecological Buffers (see **Section 5**); and,
- Any details regarding post-construction operations and / or maintenance, including ecological monitoring.

The development of compensation plans must comply with the applicable policies and follow the guidelines provided in **Section 6** of these Environmental Management Guidelines.

2.5.2.9 *Environmental Management Recommendations*

The Environmental Management Recommendations section is the primary deliverable of the EIS and may also be required for a SLSR where the need for management of the feature is deemed appropriate by the City without an EIS.

The environmental management recommendations must be clearly articulated and must be specific enough to be translated into Conditions of Draft Approval, Development Agreement and / or Subdivision Agreement for a project.

The recommendations should be numbered and organized by project phase, from planning and design, through construction, to post-construction and post-development.

The environmental management recommendations, once part of an approved EIS, form the basis of a stand-alone Environmental Management Plan (EMP) that may be submitted as part of the approved EIS or submitted following EIS approval to ensure the recommendations within it are carried forward to the Focused Design / Detailed Design and implemented in construction stages, as appropriate (see **Appendix A**).

The following are typical components of an EMP.

- Confirmed NHS components on and adjacent to the subject lands, including:
- Ecological Buffers
- restoration, enhancement and compensation measures/areas
- construction mitigation plans (before, during and following construction), and,
- monitoring plans (before, during and following construction).

Environmental management recommendations identified during Preliminary, Detailed or Focused Design that are to appear on the contract drawings must be explicitly stated.

Text should provide direction to include the approved EIS or the most current City-approved EMP with the tender documents for later project stages. In instances where a detailed construction monitoring plan is required as part of the approved EIS, the EIS or the EMP should include a draft field inspection form template in the Appendices.

To effectively develop a post-construction monitoring program, baseline conditions are typically established through the EIS and stations for long-term, post-construction monitoring in the protected NHS are typically identified along with the recommended type(s) and frequency of monitoring. Assessing the success of the avoidance, mitigation and compensation will be determined in relation to the baseline conditions and / or other established standards or guidelines, as appropriate.

In the case of a SLSR and an EIS, the “Environmental Management Recommendations” section may be used to inform refinements or updates to the applicable land use designation(s).

Section 7 outlines the context and specific requirements of the EMP, including monitoring requirements, and should be carefully reviewed and referenced as appropriate.

2.5.2.10 Conclusions

The Conclusions section of the SLSR or EIS report shall provide the following elements:

Summary of Key Findings – A brief summary of the key findings of the study should be provided to indicate the confirmed NHS components on the subject lands and with reference to the broader study area as needed.

Key Recommendations – Either a summary of key recommendations, or a reference to the Environmental Management Recommendations section of the report must be provided. Where applicable, direction regarding the implementation of the recommendations must also be stated.

Conclusion Statement – A clear statement of the conclusions of the SLSR or EIS is required. In the case of an EIS, a clear statement as to whether the proposed development or project, with the recommended avoidance and mitigation measures, can meet the test of “*no negative impacts on the natural features or on their ecological functions*” (MMAH, 2024) must be included in this section.

This statement must be demonstrated through an Impact and Net Effects Assessment that results in positive net effects or no negative net effects, assuming the recommended avoidance, mitigation and / or compensation measures are implemented as recommended (as per Section 2.5.2.9).

The conclusions should also state whether the proposal / project meets the intent and requirements of the environmental natural heritage policies of *The London Plan*, the *Provincial Planning Statement* and any other relevant legislation or policies, including applicable natural hazard regulations and / or policies from the Conservation Authorities, Province and / or Federal government. A summary of the rationale for the conclusion statement must be provided to support the statement.

2.5.2.11 References, Appendices, and Figures

References – All relevant references used in the preparation of, or cited in the SLSR, EIS or EMP shall be listed in a References section. References should be in alphabetical order by author. Each reference should indicate author(s), year of

publication, title, and publisher. For journal articles the journal name, volume, and pages should be provided. For websites, the full website address should be provided.

Appendices – Supporting documentation as referenced in each section of the report should be provided in the Appendices section and separated by appendix title pages. The order of appendices should follow the order of reference in the sections of the report. Appendices will typically include:

- Natural Heritage Study Scoping Checklist (NHSSC)
- Resumes (up to two pages) for each of the study's authors, reviewers, and field staff
- Aquatic habitat field sheets and sketches
- Aquatic species list and life history information
- Ecological Land Classification (ELC) data sheets including soil characterization
- Completed Woodland Evaluation Form (Appendix D)
- Plant species list by ELC community type with rarity rankings
- Bird species list by survey location with rarity rankings
- Amphibian survey data sheets and species list
- Additional wildlife lists by survey locations with rarity rankings, as applicable
- Significant Wildlife Habitat (SWH) data sheets and screening assessment
- SAR screening and habitat assessment
- Photographs

Figures – All figures for the SLSR, EIS or EMP shall be either embedded in the body of the report and presented on the first full page following the first reference in the text to the figure or compiled in the Appendices. All figures should be sequentially numbered and have the following:

- A colour aerial photograph base from the most recent year available, where it does not obscure other important information
- The subject lands and study area boundaries
- Roads/streets (labelled), utility corridors, and other “surface” infrastructure such as rail lines
- Surface water features including watercourses
- A North arrow, scale and legend with all symbols and shading labelled

At a minimum the following figures shall be included in the SLSR, EIS:

- Figure: showing the type(s) and extent of **existing and candidate** Natural Heritage Features and Areas on Map 5 of *The London Plan* or identified as meeting the 0.5 ha Unevaluated Vegetation Patch policies (see **Figure 3.1**) on the subject lands.
- Figure: showing the type(s) and extent of **confirmed** NHS Features and Areas consistent with *The London Plan* terminology (see **Figure 3.1**) on the subject lands, including the areas (in hectares) for each NHS Feature and Area in a table within the report.
 - The final recommended Ecological Buffers shall be shown in EIS and preliminary Ecological Buffers may be shown in a SLSR in accordance with the guidance in **Section 5** (see **Table 5.2**).

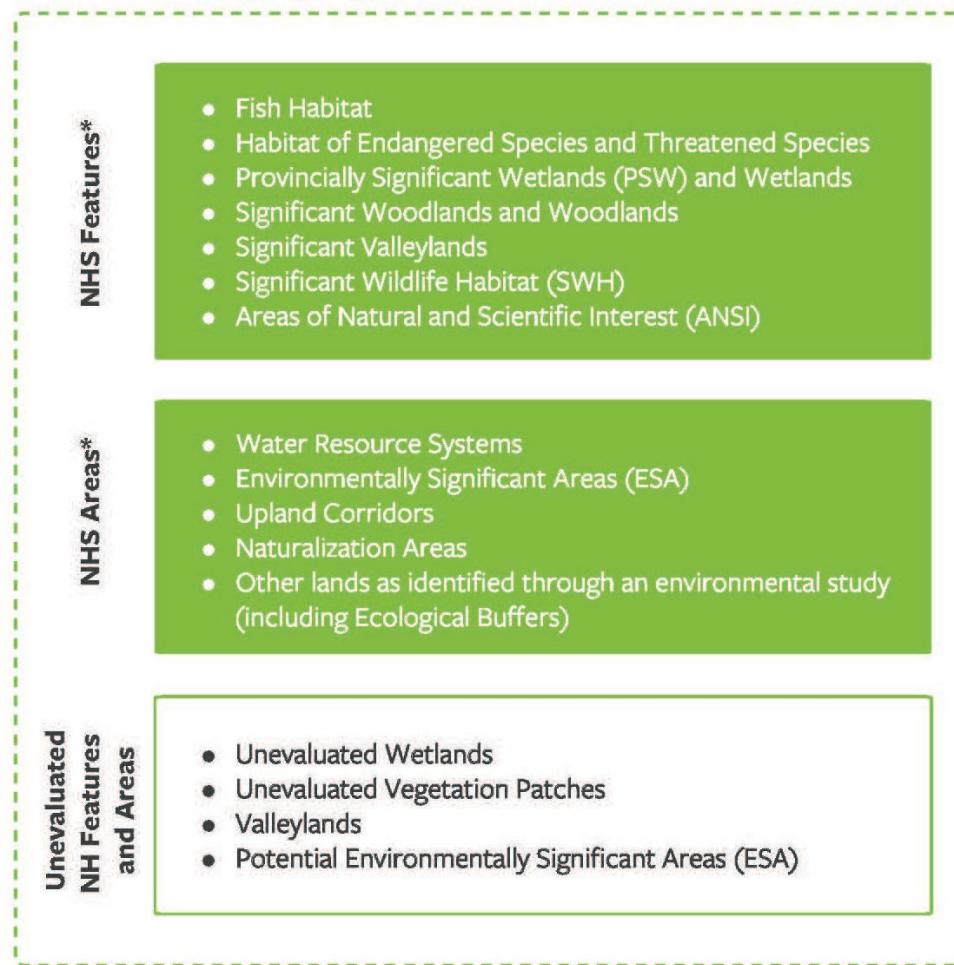
Where figures are illustrating the same area(s)/feature(s) they shall be prepared at a consistent scale to facilitate comparison and cross-referencing. Note that figure insets can be provided to show additional detail if and where appropriate.

3. Evaluation of Significance and Ecological Function

“The City’s NHS is a system of natural heritage features and areas and linkages intended to provide connectivity at the regional or site level and support natural processes which are necessary to maintain biological and geological diversity, natural functions, viable populations of native species, and ecosystems” (*The London Plan* – Policy 1298). Evaluation of the significance and ecological functions of the various NHS components through the planning process informs the protection of the NHS and may lead to the addition, removal or refinement of NHS features included on City of London mapping (see Map 5 in *The London Plan*). An overview of the different categories of Natural Heritage Features and Areas in the City of London is provided in **Figure 3.1**.

While these components are all generally protected within the broader system, the process for evaluating these components and the jurisdictional responsibility confirming their significance and enforcing the policies for their protection are not the same for all features and areas. As outlined in the *Provincial Planning Statement* and in *The London Plan*, the following applies to the City’s NHS components:

- Fish Habitat and the habitat of Endangered and Threatened species are to be assessed in accordance with the applicable federal and / or provincial regulations, policies and guidance in consultation with the appropriate federal and / or provincial agency, sometimes with technical support from the local Conservation Authority;
- Provincially Significant Wetlands (PSW) are mapped by the Province and may be evaluated or re-evaluated by a professional qualified in the OWES²;
- Provincially Significant Areas of Natural and Scientific Interest (ANSI) are identified and confirmed by the Province in accordance with provincial systems and criteria;
- Significant Woodlands, SWH and Significant Valleylands are identified and confirmed by the City using locally-developed criteria aligned with the criteria and guidance established by the Province, sometimes with support from the local Conservation Authority, particularly for valleylands which they typically regulate where these features overlap with natural hazards;
- As per *The London Plan* Policies 1361_ and 1362_, Water Resource Systems capture a range of surface and groundwater features and areas that are to be assessed in accordance with the applicable provincial regulations, policies and


² *Landowner Notification and Permission*: “*Evaluators must notify landowners that a wetland evaluation is being undertaken “for a wetland located on their property. Landowner permission must be obtained before accessing private property to carry out wetland evaluation field work. Arrangements with landowners for access to private property must occur prior to the field work.”* (MNRF 2022, pg. 8).

guidance in consultation with the appropriate provincial agency and local Conservation Authority;

- Environmentally Significant Areas (ESA) may be assessed by the proponent but are identified and confirmed by the City using locally-developed criteria, sometimes with support from the local Conservation Authority, particularly when the area overlaps with lands they regulate (e.g., wetlands and their associated areas of interference, watercourses and valleylands including their associated setbacks) (Conservation Ontario, 2024); and
- Upland Corridors and Naturalization Areas are identified and confirmed by the City as per the policies in *The London Plan*.

Figure 3.1: Natural Heritage Feature and Area Subcategories

Natural Heritage (NH) Features and Areas

* Approved for inclusion as a Green Space Place Type

Notes

- (1) PSW, Wetlands, Significant Woodlands, Woodlands, and SWH are all NHS Features comprised of one or more Community Series, Ecosites and/or Vegetation Types identified using the Ecological Land Classification (ELC) system for southern Ontario (as per Lee et al., 1998).
- (2) ESA are comprised of more than one NHS Features and may also include one or more NHS Areas.
- (3) All unevaluated NH Features and Areas identified on the subject lands are to be evaluated in accordance with these Environmental Management Guidelines to determine if they qualify as one or more NHS Features or Areas.

NH: Natural Heritage

NHS: Natural Heritage System

Figure 3.1: Natural Heritage Feature and Area subcategories

The Environmental Policies section of *The London Plan* defines and provides policy guidance for the evaluation of all the NHS components, including locally-developed criteria where applicable, and points to applicable sources of additional technical guidance at the federal, provincial and / or local (i.e., municipal and Conservation Authority) levels. This section of the EMG provides additional guidance related to the evaluation of NHS components where the City of London and, where applicable, the local Conservation Authority, are responsible for confirming the evaluation of significance.

The following sections provide guidelines for the evaluation of significance and ecological function for the following NHS Features and Areas as specifically outlined in *The London Plan*:

- Significant Woodlands and Woodlands (**Section 3.1**)
- Environmentally Significant Areas (ESA) (**Section 3.2**)
- Provincially Significant Wetlands (PSW), Wetlands and Unevaluated Wetlands (**Section 3.3**)
- Significant Wildlife Habitat (SWH) (**Section 3.4**), and
- Significant Valleylands and Valleylands (**Section 3.5**)

Although other NHS Features may require evaluation and subsequent protection (e.g., Fish Habitat, habitat of Endangered and Threatened species, ANSI, etc.), the guidelines for evaluating those NHS Features are outlined in the applicable provincial, federal, or other technical documents. It is expected that all natural heritage features and areas be evaluated in accordance with the appropriate and most up-to-date guidelines and / or policies.

The guidance for criteria application provided for Significant Woodlands and ESA is based on the current science and natural heritage studies completed in the City, as well as what was approved before the Ontario Municipal Board (OMB) (and its successors). This guidance is more detailed, in part, because of the lack of other sources of detailed guidance, which is available for Significant Wetlands (MNRF, 2022) and SWH (MNRF, 204; MNRF, 2015a).

The locally-developed criteria and the related guidance in this section have been developed in accordance with the *Provincial Planning Statement* with careful consideration for the local biophysical and land use planning context, and for the applicable technical and scientific literature. Notably, the *Provincial Planning Statement* states that: *“planning authorities and decision-makers may go beyond these minimum standards to address matters of importance to a specific community, unless doing so would conflict with any policy of the Provincial Planning Statement”*. It further states that for NHS components that are to be locally confirmed that: *“Criteria for determining significance for the resources … are provided in provincial guidance but municipal approaches that achieve or exceed the same objective may also be used”* (MMAH, 2024).

In all cases, the proponent must comply with the most current applicable policies. The proponent is also expected to follow guidelines related to the evaluation of significance and ecological functions of NHS components in the City, including any that may be adopted following the approval of these EMG.

3.1 Significant Woodlands and Woodlands

The objective of these guidelines is to provide a standardized and scientifically-based approach for the evaluation of woodlands that is consistent with *The London Plan* policies, the *Provincial Planning Statement* MMAH, 2024), and the *Natural Heritage Reference Manual* (MNRF, 2010b). This section describes the required methods for evaluating the ecological significance of all woodland features including Unevaluated Vegetation Patches, Woodlands and Other Vegetation Patches greater than 0.5 ha (as per *The London Plan* Policies 1337_ through 1343_, and 1383_ through 1386_).

3.1.1 Policy and Context

Policies outlined in the *Provincial Planning Statement* protect Significant Woodlands by not permitting development and site alteration within or in the lands adjacent to Significant Woodlands south and east of the Canadian Shield, unless it has been demonstrated that there will be no negative impacts on the natural features or their ecological functions.

According to the *Provincial Planning Statement* and *The London Plan* policy 1337, woodlands are defined as: “*treed areas that provide environmental and economic benefits to both the private landowner and the general public, such as erosion prevention, hydrological and nutrient cycling, provision of clean air and the long-term storage of carbon, provision of wildlife habitat, outdoor recreational opportunities, and the sustainable harvest of a wide range of woodland products*” and “*include treed areas, woodlots, or forested areas and vary in their level of significance at the local, regional, and provincial levels*”.

Furthermore, the *Provincial Planning Statement*, considers woodlands significant when an area “*is ecologically important in terms of features such as species composition, age of trees and stand history; functionally important due to its contribution to the broader landscape because of its location, size, or due to the amount of forest cover in the planning area; or economically important due to site quality, species composition, or past management history*”. These are to be identified using criteria established by the MNRF, with the most current provincial guidance provided in the *Natural Heritage Reference Manual* (MNRF 2010b), with supplemental guidance specific to the City of London provided in **Section 3.1.2** below.

The London Plan has built on the provincial guidance and incorporated local considerations to ensure the identification and evaluation of significance for woodland components of the City’s NHS that is aligned with local objectives and conditions. The policy framework for the identification and evaluation of Significant Woodlands and Woodlands are outlined in *The London Plan* – Significant Woodlands and Woodlands, with supplemental technical guidance provided in Section 3.1.2 below.

Most woodland features that must be evaluated are shown as Unevaluated Vegetation Patches on Map 5 – Natural Heritage and as Environmental Review Place Type on Map 1 in *The London Plan*. However, as outlined in *The London Plan* – Policy 1216_, the absence of Unevaluated Vegetation Patches from the aforementioned mapping, does not necessarily mean that Other Vegetation Patches do not exist where none have been mapped. Therefore, evaluations of Natural Heritage Features and Areas on the subject

lands in question must include screening for the presence of any Unevaluated Vegetation Patches and / or unmapped Other Vegetation Patches larger than 0.5 hectares (ha) that may need to be evaluated for significance.

Guidance for how to identify and delineate woodland features is provided in **Section 4.3**.

Evaluation criteria for woodland significance are outlined in *The London Plan* (Policy 1341). **Section 3.1.2** provides further detail with respect to how each of these criteria should be implemented and which specific measures should be applied for the evaluation of significance and ecological function for woodland features in London.

An Unevaluated Vegetation Patch and / or an unmapped Other Vegetation Patch must be screened as a Significant Woodland if it meets the definition of a woodland feature (see the Glossary in **Section 8**) within the City of London. To determine if an Unevaluated Vegetation Patch and / or an unmapped Other Vegetation Patch qualifies as a woodland feature, appropriate ecological inventory (as described in **Section 4.3**) and Significant Woodland evaluation (described in the following section) methods shall be used.

The Significant Woodland evaluation form, provided in **Appendix D**, shall be completed and included as a SLSR or EIS appendix, where appropriate. **Consistent with *The London Plan* a woodland feature will be considered significant if it meets either of the following evaluation scores:**

If one or more criteria meet the standard for “High”; or

If five or more criteria meet the standard for “Medium”.

3.1.2 Significant Woodland Evaluation Criteria

The London Plan – Criterion 1341 1.

The woodland contains natural features and ecological functions that are important to the environmental quality and integrity of the NHS. These include site protection (hydrology and erosion / slope) and landscape integrity (richness, connectivity and distribution).

Criterion 1.1. – Site Protection (Ecological Function Measure)

1.1 (A) Presence of hydrological features within or contiguous with the woodland feature.

This measure relates to *Hydrological and Related Values* as outlined in the *Natural Heritage Reference Manual* and the following concepts with respect to hydrological, hydrogeological and biological function:

- a) “*Waterbodies, including wetlands, often represent a relatively small percentage of the total land area, yet they can be disproportionately more valuable than other areas*”, and
- b) “*It is recommended that measures be taken to protect water features, wetlands and other areas of significant hydrological importance (e.g., headwaters,*

recharge areas, discharge areas) within natural heritage systems" (MNRF, 2010b).

Further, this measure relates to other concepts identified in subwatershed studies completed for the City of London to recognize the following:

- a) the linkage between protection of groundwater and vegetation on the surface;
- b) the interface between aquatic and terrestrial systems which have high biodiversity and are the focus of important ecological functions; and,
- c) the important hydrological functions of wetland features that complement and enhance those provided by woodland features.

For the purposes of this evaluation, hydrological features include the following features and / or areas:

- Significant groundwater discharge and recharge areas or groundwater baseflow contributions which sustain or enhance the feature, as defined by:
 - a site-specific hydrogeological study, or
 - evidence of concentrations of groundwater dependent species.
- Headwaters and watercourses including:
 - Floodplains (as regulated by the local Conservation Authority)
 - River, stream, and ravine corridors (Valleylands) outside of floodplain regulated lands with demonstrated hydrologic function to support biological function, and
- Wetlands³ of at least 0.1 hectares (evaluated and unevaluated).

Criterion Ranking:

- **HIGH** – At least one (1) hydrological feature (as described above) located within or contiguous with the woodland feature.
- **MEDIUM** – The woodland feature is within 50 m of at least one (1) hydrological feature.
- **LOW** – No hydrological features present within 50 m of the woodland feature.

1.1 (B) Erosion and Slope Protection

Soil erosion may adversely affect a feature by removing nutrient rich soils, destroying vegetation, and the deposition of eroded soil material (MNRF, 1997b). As slopes increase, the erosion risk also increases; however, slopes less than 10% generally experience minimal erosion (MNRF, 1997b; MNRF, 2010b).

This measure relates to the need “*to protect runoff processes, ground stability, and aquatic habitat (erosion potential) for slopes > 10%*” (MNRF, 2010a).

³ Notably, the Conservation Authorities regulate and protect natural hazards, including all features that meet the definition of “wetlands” under the *Conservation Authorities Act*.

Slopes can be determined using Geographic Information System (GIS) applications such as ArcMap in combination with up-to-date contour mapping. Conservation Authorities also identify slopes with areas associated within the Regulatory Limit (e.g., UTRCA, 2006).

Additionally, this measure requires knowledge of the soil textures and types as described in the ELC Manual (Lee et al., 1998) based on the Ontario Institute of Pedology (1985) and Canadian Soil Classification System (Soil Classification Working Group, 1998).

Criterion Ranking:

- **HIGH** – The woodland feature is present on steep slopes greater than 25% of any soil type, OR on a remnant slope associated with other features such as moraines or remnant valley slopes no longer continuous with the river system OR on moderate to steep slopes between 11% and 25% with erodible soils (silty loam, sandy loam and loam, fine to coarse sands).
- **MEDIUM** – The woodland feature is present on moderate to steep slopes between 11% and 25% with less erodible soils (heavy clay and clay, silty clay)
- **LOW** – The woodland feature is present on gentle slopes of 10% or less with any soil type.

Score for **Criterion 1.1** is based on the highest standard achieved between the two measures.

Criterion 1.2 – Landscape Integrity (Richness, Connectivity and Distribution) (Ecological Function)

1.2 (A) Landscape Richness

Landscape richness is a concept from landscape ecology that generally measures the density of landscape fragmentation, or lack thereof, as measured by the total area of all features per unit area of land. Building on the understanding that: “*Native plant richness and flora quality are significantly related to local forest cover*” (UTRCA, 1997; Bowles and Bergsma, 1999), the, the *Natural Heritage Reference Manual* outlines the following concepts:

- a) “*Natural areas (or clusters of areas) that span a range of topographic, soil, and moisture conditions tend to contain a wider variety of plant species and plant communities, and may also support a greater diversity of ecological processes*”, and,
- b) “*Where large core areas do not exist, groupings of habitat patches with potential for restoration should be included to maintain ecological function at the landscape scale*” (MNRF, 2010b).

For the purpose of evaluating landscape richness in the context of the City of London, percent cover of all mapped NHS Features and Areas (see **Figure 3.1**) within a 2 km radius circle from the centroid of the woodland feature being assessed. The thresholds

of 7% and 10% used in the criteria reflect the cumulative frequency distribution of wooded features as mapped within London (Bergsma, 2004).

Criterion Ranking:

- **HIGH** – More than 10% of NHS cover within 2 km of the woodland feature.
- **MEDIUM** – Between 7% and 10% of NHS cover within 2 km of the woodland feature.
- **LOW** – Less than 7% of NHS cover within 2 km of the woodland feature.

1.2 (B) Landscape Connectivity (linkage and distance between NHS Features not separated by permanent cultural barriers)

This measure relates to *Proximity, Connectedness, and Naturalness and Disturbance* outlined in the *Natural Heritage Reference Manual* and the following concepts:

- a) Blocks of habitat (also called feature clusters in the City of London) that are arranged close together limit fragmentation and are usually better than those that are located farther apart; and,
- b) Relatively undisturbed natural areas are generally more desirable than highly altered areas (MNRF, 2010b).

Criterion Ranking:

- **HIGH** – The woodland feature is directly connected to:
 - i. waterways or riparian habitat (generally primary or secondary aquatic corridors and streams with bridges and / or underpasses: for example, Thames, Dingman, Medway, Stoney, Pottersburg, Kettle, Dodd, Sharon, Oxbow, Kelly, Stanton, Mud, Crumlin); and / or
 - ii. One or more confirmed NHS Feature(s).
- **MEDIUM** – The woodland feature is indirectly connected to other NHS Features by habitat gaps less than 40 m consisting of:
 - i. Any natural heritage feature(s) or area(s);
 - ii. Abandoned rails, utility rights-of-way (hydro corridors, water/gas pipeline);
 - iii. Open space greenways and golf courses;
 - iv. Active agriculture or pasture;
 - v. Watercourses connected by culverts; and / or
 - vi. First or second order streams that exhibit channelized morphology.
- **LOW** – The woodland feature is not connected to other NHS Features due to the presence of permanent cultural barriers greater than 40 m consisting of:
 - i. major roads and highways with no culverts providing wildlife connectivity;
 - ii. urban or industrial development, large parking lots;
 - iii. infrastructure;
 - iv. dams, buried watercourses, channelized third or greater order watercourses; and / or,
 - v. active recreational land-uses (e.g., campground, parks with major facilities – community centres, arenas).

1.2 (C) Woodland Feature Distribution (isolation and arrangement of woodland features / feature clusters)

This measure relates to *Proximity, Connectedness, Size and Distribution* outlined in the *Natural Heritage Reference Manual* and the following concepts:

- a) Blocks of habitat (also called feature clusters in the City of London) that are arranged close together limit fragmentation and are usually better than those that are located farther apart; and,
- b) Large patches of natural area are more valuable than smaller patches (MNRF, 2010b), although smaller habitat patches can also have value in supporting biodiversity, particularly when they are clustered (Fahrig ,2020).

Following a review of the empirical evidence in the literature, Fahrig (2020) concluded that the interaction or flow of organisms among woodland features appeared to be influenced by the size of the features and the distance separating them. Woodland feature clusters are defined as features within 250 m of each other that are not separated by major roads, highways, or urban development.

Criterion Ranking:

- **HIGH** – The woodland feature clusters have a total area of more than 40 ha within 250 m of the woodland feature (including the feature being evaluated).
- **MEDIUM** – The woodland feature clusters have a total area between 20 and 40 ha within 250 m of the woodland feature (including the feature being evaluated).
- **LOW** – The woodland feature clusters have a total area less than 20 ha within 250 m of the woodland feature (including the feature being evaluated).

Score for **Criterion 1.2** based on the highest standard achieved for any one of the three standards.

The London Plan – Criterion 1341 2.

The woodland provides important ecological functions and has an age, size, site quality, and diversity of biological communities and associated species that is uncommon for the planning area.

Criterion 2.1 – Age and Site Quality

2.1 (A) Community Successional Stage / Seral Age

This measure relates to *Uncommon Characteristics of Woodlands* as described in *Natural Heritage Reference Manual*, and the concept that: “Older woodlands are particularly valuable for several reasons, including their contributions to genetic, species, and ecosystem diversity” (MNRF, 2010b).

For the purpose of this evaluation, community age is determined based on definitions in the provincial ELC for Southern Ontario (Lee *et. al.*, 1998). Seral age reflects the composition of the plant community (especially trees) with respect to light tolerance and moisture conditions). Generally, mature or advanced seral stage community types are

under-represented in the London Subwatershed (Bowles, 1995), Middlesex County (UTRCA, 2003) and Oxford County (UTRCA, 1997).

Criterion Ranking:

- **HIGH** – The woodland feature contains one (1) or more mature or older growth communities.
- **MEDIUM** – The woodland feature contains one (1) or more mid-aged communities.
- **LOW** – The woodland feature contains only pioneer to young communities.

2.1 (B) Mean Coefficient of Conservatism (MCC) of woodland feature

This measure relates to *Species Rarity and Uncommon Characteristics of Woodlands* as outlined in the *Natural Heritage Reference Manual* and the following concepts:

- a) In general, natural areas that contain rare species are more valuable than those that do not; and,
- b) Woodland features that are uncommon in terms of species composition should be protected (MNRF, 2010b).

The MCC can provide useful information on the susceptibility of communities to adverse anthropogenic effects (Francis *et al.*, 2000; Catling, 2013). The MCC thresholds identified below have been based on the Floristic Quality Assessment System for Southern Ontario (Oldham *et al.*, 1995), analysis of distribution in the London subwatershed area (Bowles and Bergsma, 1999), results of the Middlesex Natural Heritage Study (UTRCA, 2014), and Oxford County Terrestrial Ecosystem Study (UTRCA, 1997).

Criterion Ranking:

- **HIGH** – one (1) or more vegetation (ELC) community with an MCC ≥ 4.6 ; OR MCC of woodland feature > 4.5 .
- **MEDIUM** – one (1) or more vegetation (ELC) community with an MCC 4.2 to 4.5; OR MCC of woodland feature ≥ 4.0 to 4.5.
- **LOW** – all vegetation (ELC) communities with an MCC < 4.2 ; OR MCC of woodland feature < 4.0 .

Score for **Criterion 2.1** based on the highest standard achieved for any one of the two standards.

Criterion 2.2 – Size and Shape

2.2 (A) Woodland Feature Size

This measure relates to *Size* as described in the *Natural Heritage Reference Manual* (MNRF, 2010b).

Woodland feature size is generally positively correlated with ecological function. Larger features can provide functions that smaller features cannot such as habitat for area-

sensitive species, reduced forest edge, increased forest interior, and increased resiliency from human disturbance (MNRF, 2010b).

The following thresholds have been derived from a cumulative frequency curve distribution for natural and cultural woodland features within the City of London (Bergsma, 2004).

Criterion Ranking:

- **HIGH** –The woodland feature is greater than 4.0 ha.
- **MEDIUM** –The woodland feature is between 2.0 and 4.0 ha.
- **LOW** – The woodland feature is less than 2.0 ha.

2.2 (B) Woodland Feature Shape and Presence of Interior

The shape of woodland features influences the amount of edge and interior habitat, and thus can influence resilience, disturbance, and species-specific habitat requirements (as described above) (MNRF, 2010a). Edge habitat, specifically for woodlands, has increased across southern Ontario with increased fragmentation; and subsequently the area of forest interior has decreased.

This measure relates to shape as described in *Natural Heritage Reference Manual*, and the following concepts:

- a) The shape of natural areas affects their value as wildlife habitat and their resilience to disturbance effects; and,
- b) Round or block-shaped natural areas contain less edge per unit of area than long, narrow natural areas.

As edge effects can extend into woodland features (Environment Canada, 2013), the interior area for a woodland feature is typically calculated based on a 100 m distance from the interior of the edge habitat (MNRF 2010b). This measure is a generally accepted standard used in southern Ontario, and elsewhere.

Criterion Ranking:

The presence of any interior habitat (measured at more than 100 m from the feature edge) in a woodland patch will add one **HIGH** score to the overall assessment.

2.2 (C) Bird Species Associated with Woodland Features

This measure relates to *Species Diversity and Rarity* as described in *Natural Heritage Reference Manual*, and the following concepts:

- a) Natural areas that contain a high diversity of native plant and animal species are generally more important than areas that contain a lower diversity of species; and,
- b) In general, natural areas that contain rare species are more valuable than habitats that do not (MNRF, 2010b).

Birds can be indicators of habitat quality and the degree of forest fragmentation. The following criteria rankings have been developed based on the guidance from the:

Significant Wildlife Habitat Ecoregion 7E Criteria Schedules (MNRF, 2015a) for "Habitat of Species of Conservation Concern, Special Concern and Rare Species".

Criterion Ranking:

- **HIGH** – The woodland feature provides breeding habitat for any three (3) or more bird species of conservation concern, including provincially rare bird species (MNRF, 2015a).
- **MEDIUM** – The woodland feature provides breeding habitat for one (1) or two (2) bird species of conservation concern, including provincially rare bird species (MNRF, 2015a).
- **LOW** – The woodland feature does not provide breeding habitat for any bird species of conservation concern, including provincially rare bird species (MNRF, 2015a).

Score for **Criterion 2.2** based on the highest standard achieved for any one of the three standards.

Criterion 2.3 Diversity of Communities, Landforms and Associated Species

2.3 (A) ELC Community Diversity within Woodland Features

This measure relates to *Habitat Diversity, Complexity, and Uncommon Characteristics of Woodlands* as described in *Natural Heritage Reference Manual*, and the following concepts:

- a) Natural areas (or natural feature clusters) that span a range of topographic, soil and moisture conditions tend to contain a wider variety of plant species and plant communities, and may also support a greater diversity of ecological processes;
- b) Older woodland features are particularly valuable for several reasons, including their contributions to genetic, species, and ecosystem diversity; and,
- c) Woodland features and communities that are uncommon in terms of species composition, cover type, age, or structure should be protected.

Native plant species diversity is mainly related to the number of communities in the feature, but also to its area and landscape richness (UTRCA, 1997; MNRF, 2010b).

The following thresholds were developed based on an analysis of all vegetation communities (including cultural) identified at the Community Series level using the ELC system (Lee et al., 1998) in the City of London digital GIS layer. Thresholds were derived from cumulative frequency distribution of woodland features for a total of 23 Community Series categories (Bergsma, 2004). Assessments are to consider all Community Series types within a woodland feature, including cultural treed communities.

Criterion Ranking:

- **HIGH** – The woodland feature contains 6 or more ELC Community Series.
- **MEDIUM** – The woodland feature contains 3 to 5 ELC Community Series.
- **LOW** – The woodland feature contains 1 or 2 ELC Community Series.

2.3 (B) Community and Topographic Diversity (variation and heterogeneity) within Woodland Features

This measure relates to *Habitat Diversity and Complexity* as described in *Natural Heritage Reference Manual*, and the concept that: “*natural areas (or clusters of areas) that span a range of topographic, soil and moisture conditions tend to contain a wider variety of plant species and plant communities, and may also support a greater diversity of ecological processes*” (MNRF, 2010b).

This is applied to all communities as defined by this study and based on ELC Community tables (Lee et. al., 1998) and topographic feature description. The seven (7) topographic feature categories for the City of London are as follows: riverine, bottomland, terrace, valley slope, tableland, rolling upland, bluff.

Criterion Ranking:

- **HIGH** – The woodland feature contains three (3) or more Ecosites in one (1) Community Series OR four (4) or more Vegetation Types OR three (3) or more topographic features (e.g. tableland, rolling upland, valley slope, terrace, bottomland).
- **MEDIUM** – The woodland feature contains two (2) or more Ecosites in one Community Series OR by three (3) Vegetation Types OR two (2) topographic features, or one (1) Vegetation Type with inclusions (as defined in **Section 8**).
- **LOW** – The woodland feature is relatively homogenous and contains one (1) Ecosite OR one (1) to two (2) Vegetation Types on one (1) topographic feature.

2.3 (C) Diversity (species and individuals) and Critical Habitat Components for Amphibians within Woodland Features

This measure relates to *Species Diversity and Rarity* as described in the *Natural Heritage Reference Manual*, and the concept that: “*areas that contain a high diversity of plant and animal species are generally more important than areas that contain a lower diversity of species*”.

Amphibians are indicators of healthy woodlands with well-functioning processes (MNRF, 2000b; MNRF, 2010b). This measure is applied to the woodland feature based on the presence of amphibians and / or critical habitat components including the following:

- 1) shallow water that remains wet for the breeding season (presence of vernal pools);
- 2) emergent and submergent aquatic vegetation (presence of aquatic ELC community types);
- 3) presence of instream logs and shoreline shrubs (Fish Habitat);
- 4) closed canopy offering a shaded moist understory environment (presence of forest or treed swamp communities); and,
- 5) abundance of coarse woody debris (i.e., deadfall /logs, firm or decayed in the 10 to 24, 25 to 50 or more than 50 cm size classes).

Criterion Ranking:

- **HIGH** – Three (3) or more species of amphibians present, OR one (1) species of amphibian that is abundant* in one (1) or more communities; OR two (2) or more critical habitat components present in the woodland feature.
- **MEDIUM** – One (1) or two (2) species of amphibians present; OR one (1) species of amphibian that is occasional* in one (1) or more communities; OR one (1) critical habitat components present in the woodland feature.
- **LOW** – No species of amphibian present, OR no critical habitat components present in the woodland feature.

* Criterion 2.3 (C) Note: Abundance is based on call codes from the amphibian survey protocol as part of the Marsh Monitoring Program (Bird Studies Canada, 2009a). Presence is determined with a call code ≥ 1 ; occasional is defined as any species with a call code 2; abundant is defined as any species with a call code 3.

2.3 (D) Presence of Conifer Cover within Woodland Features

This measure relates to *Representation* and *Habitat Diversity* and *Complexity* as described in *Natural Heritage Reference Manual*, and the following concepts:

- a) The full range of natural features that occur in an area, including both rare and common features, should be protected as a fundamental step in NHS planning to preserve biodiversity at the species and community levels; and,
- b) Natural areas (or natural feature clusters) that span a range of topographic, soil and moisture conditions tend to contain a wider variety of plant species and plant communities, and may also support a greater diversity of ecological processes.

Conifer cover is known to be important for providing winter food and shelter for a variety of wildlife species (MNRF, 2000a; MNRF, 2010b). For this measure, conifer communities are based on ELC (Lee *et al.*, 1998) and include FOC, FOM, SWC, SWM, and CUP.

Criterion Ranking:

- **HIGH** – The woodland feature contains one or more conifer communities that are greater than 4.0 ha in size.
- **MEDIUM** – The woodland feature contains one or more conifer communities that are between 2.0 and 4.0 ha in size.
- **LOW** – The woodland feature contains conifer communities less than 2.0 ha in size.

2.3 (E) Fish Habitat Quality within Woodland Features

This measure relates to *Hydrological and Related Values* and *Water Protection* as described in *Natural Heritage Reference Manual*, and the following concepts:

- a) Waterbodies, including wetlands, often represent a relatively small percentage of the total land area, yet they can be disproportionately more valuable than other area; and,

b) Source water protection is important and natural hydrologic processes should be maintained (MNRF, 2010b).

The health of an aquatic habitat is determined by the health of the water body and surrounding land use practices. Both permanent and intermittent watercourses can provide critical habitat for many species.

Criterion Ranking:

- **HIGH** – Dissolved oxygen greater than 8.0 mg/L OR abundant instream woody debris and rocks and watercourse with a natural channel located within or contiguous with the woodland feature.
- **MEDIUM** – Dissolved oxygen between 5.0 and 8.0 mg/L OR moderate amount of instream woody debris and rocks and portions of channelized watercourses within or contiguous with the woodland feature.
- **LOW** – Dissolved oxygen less than 5.0 mg/L OR no instream woody debris and sparse structure and entire watercourse channelized within or contiguous with the woodland feature.

Score for **Criterion 2.3** based on the highest standard achieved for any one of the five standards.

Note: *The London Plan* Significant Woodland Evaluation Criterion 1341_3 is addressed through planning, not through these technical criteria. Therefore there are no “3.X” series criteria or guidelines.

The London Plan – Criterion 1341_4.

“The woodland provides significant habitat for species at risk.”

Criterion 4.1 – Significant habitat for endangered or threatened species.

4.1 (A) Species at Risk (SAR) habitat associated with Woodland Features

This measure relates to *Species Rarity* as described in the *Natural Heritage Reference Manual*, and the concept that in general, “habitats that contain rare species are more valuable than habitats that do not” (MNRF, 2010b).

Identification, evaluation, and listing of provincially endangered or threatened species is the responsibility of the Province. Federally endangered or threatened species, as outlined in the *Species at Risk Act*, that are not covered under provincial legislation should also be considered. Planning authorities may wish to have assessments of the significant portions of the habitat of SAR reviewed by the Province.

SAR habitat within the woodland feature identified in accordance with provincial and federal requirements: **YES** or **NO**

SAR habitat identified in accordance with provincial and federal requirements will add one **HIGH** score to the overall assessment.

The London Plan – Criterion 1341 5.

“The woodland contains distinctive, unusual or high-quality natural communities or landforms.”

Criterion 5.1 – Distinctive, unusual or high-quality communities

This criterion relates to *Habitat Complexity and Diversity*, *Species Diversity and Rarity*, and *Uncommon Characteristics of Woodlands* as described in the *Natural Heritage Reference Manual*, and the following concepts:

- a) Natural areas (or natural feature clusters) that span a range of topographic, soil and moisture conditions tend to contain a wider variety of plant species and plant communities, and may also support a greater diversity of ecological processes;
- b) Natural areas that contain a high diversity of plant and animal species are generally more important than areas that contain a lower diversity of species; and
- c) Woodland features that are uncommon in terms of species composition, cover type, age or structure should be protected (MNRF, 2010b).

5.1 (A) ELC Community SRANK within the Woodland Features

Conservation status ranks for the province (SRanks) are based on vegetation communities' risk of elimination using the ELC system for southern Ontario. This measure should be evaluated based on the most up-to-date conservation status rank as applied by Natural Heritage Information Centre (NHIC).

Criterion Ranking:

- **HIGH** – One (1) or more communities with an SRANK of S3 or lower.
- **MEDIUM** – No communities with an SRANK lower than S4.
- **LOW** – No communities with an SRANK lower than S5.

5. 1 (B) Significant Wildlife Habitat associated with Woodland Features

Significant Wildlife Habitat (SWH), including habitat for species of conservation concern and rare species occurrences within the woodland feature as determined through the *Significant Wildlife Habitat Criteria Schedules for Ecoregion 7E* (MNRF, 2015a). This criterion applies to any SWH that is not evaluated through any other criteria within these guidelines (e.g., Criterion 2.2c) that is confirmed (not candidate).

SWH habitat present or previously identified: **YES** or **NO**

The presence of confirmed SWH habitat will add one **HIGH** score to the overall assessment.

5. 1 (C) Rare Plant Species Presence / Absence within Woodland Features

This measure assesses the number of element occurrences of regionally uncommon or regionally rare plants (further outlined in the glossary) and the presence of S1-S3, SRank plant species (which are also identified as SWH) within a woodland feature.

Oldham (2017) (or comparable successor documents) identify regionally rare and regionally uncommon vascular plant species in Middlesex for this criterion. **Table 3.1** includes the Criterion Ranking.

Criterion Ranking:

- **HIGH** – At least one (1) provincially rare plant (S1-S3) or four (4) regionally rare plants.
- **MEDIUM** – One to three (1 to 3) regionally rare plant(s).
- **LOW** – No rare plants.

Table 3.1: Rare Plant Species Presence / Absence

Type and Status of Species	HIGH	MED	LOW
Provincially Rare Plant (S1-S3)	1	0	0
Regionally Rare plant	4	1 to 3	0

5.1 (D) Size and Distribution of Trees within Woodland Features

Criterion Ranking:

- **HIGH** – Trees more than 50 cm diameter at breast height (dbh) abundant in one or more communities within the woodland feature.
- **MEDIUM** – Trees more than 50 cm dbh rare or occasional in one or more communities within the woodland feature.
- **LOW** – Trees more than 50 cm dbh not present in any communities within the woodland feature.

Relative abundance, as it related to this criterion (i.e., rare, occasional, abundant), is described in **Section 8**.

Score for **Criterion 5.1** based on the highest standard achieved for any one of the four standards

Criterion 5.2 – Distinctive, Unusual or High-Quality Landforms

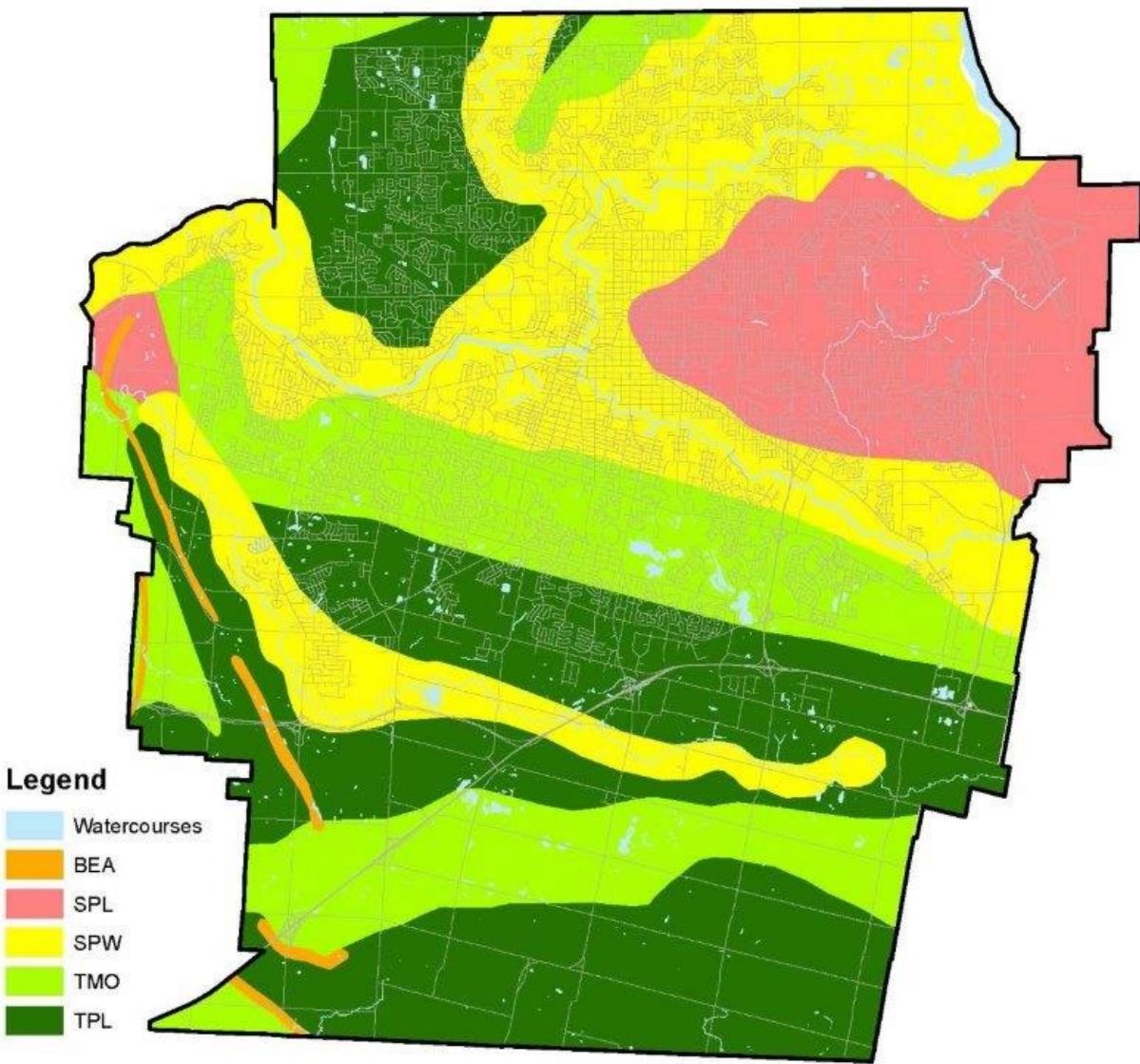
This criterion relates to *Habitat Complexity and Diversity* as described in *Natural Heritage Reference Manual*, and the following concepts:

- a) Natural areas (or natural feature clusters) that span a range of topographic, soil and moisture conditions tend to contain a wider variety of plant species and plant communities and may also support a greater diversity of ecological processes (MNRF, 2010b).

5.2 (A) Distinctive Landform Types

Analyses of the five broad landform types listed below that occur in the City were undertaken to assess landform-vegetation representational significance. This was derived by calculating the proportion of all woodland features overlapping with each of the five landforms areas (see **Figure 3.2**) that are considered protected (i.e., as Earth Science ANSIs, Environmentally Significant Areas, PSW or river corridors):

1. **Beach Ridge** landform is unusual and rare in the City with portions identified as Earth Science ANSI and PSW/ESA.
2. **Sand Plain** landform has very little protected areas present. It is considered high quality for the aggregate extraction industry.
3. **Spillway** is the second largest landform unit with the greatest proportion of protected areas and contains most of the ESA's. It is the most distinctive landform unit including the Thames River, Stoney Creek, Medway Valley and Dingman Creek.
4. **Till Plain** is the largest landform unit with the least amount of protected areas and the highest amount of vegetation. Most of the land is considered high quality agricultural.
5. **Till Moraine** is the third largest landform unit with fair amount of protected land. It accounts for the woodland features that fall on the upland landforms (Westminster Ponds – Pond Mills ESA / Meadowlily Woods).


Refer to **Figure 3.2** for glacial geomorphology mapping of landforms within the City of London.

Criterion Ranking:

- **HIGH** – The woodland feature located on a landform identified by an Earth Science ANSI OR on the Beach Ridge or Sand Plain physiographic landform units.
- **MEDIUM** – The woodland feature located on the Till Plain or Till Moraine physiographic landform unit.
- **LOW** – The woodland feature is located on the Spillway physiographic landform unit.

Score for **Criterion 5.2** (based on the highest standard achieved).

The Significant Woodland evaluation scoring sheet provided in **Appendix D** shall be completed and included as a SLSR or EIS appendix, where required.

Explanatory note:

BEA = Beach Ridge Areas
 SPL = Sand Plain Landform
 SPW = Spillway
 TPL = Till Plain
 TMO = Till Moraine

Figure 3.2: City of London glacial geomorphology of the dominant physiographic units

3.2 Environmentally Significant Areas (ESA)

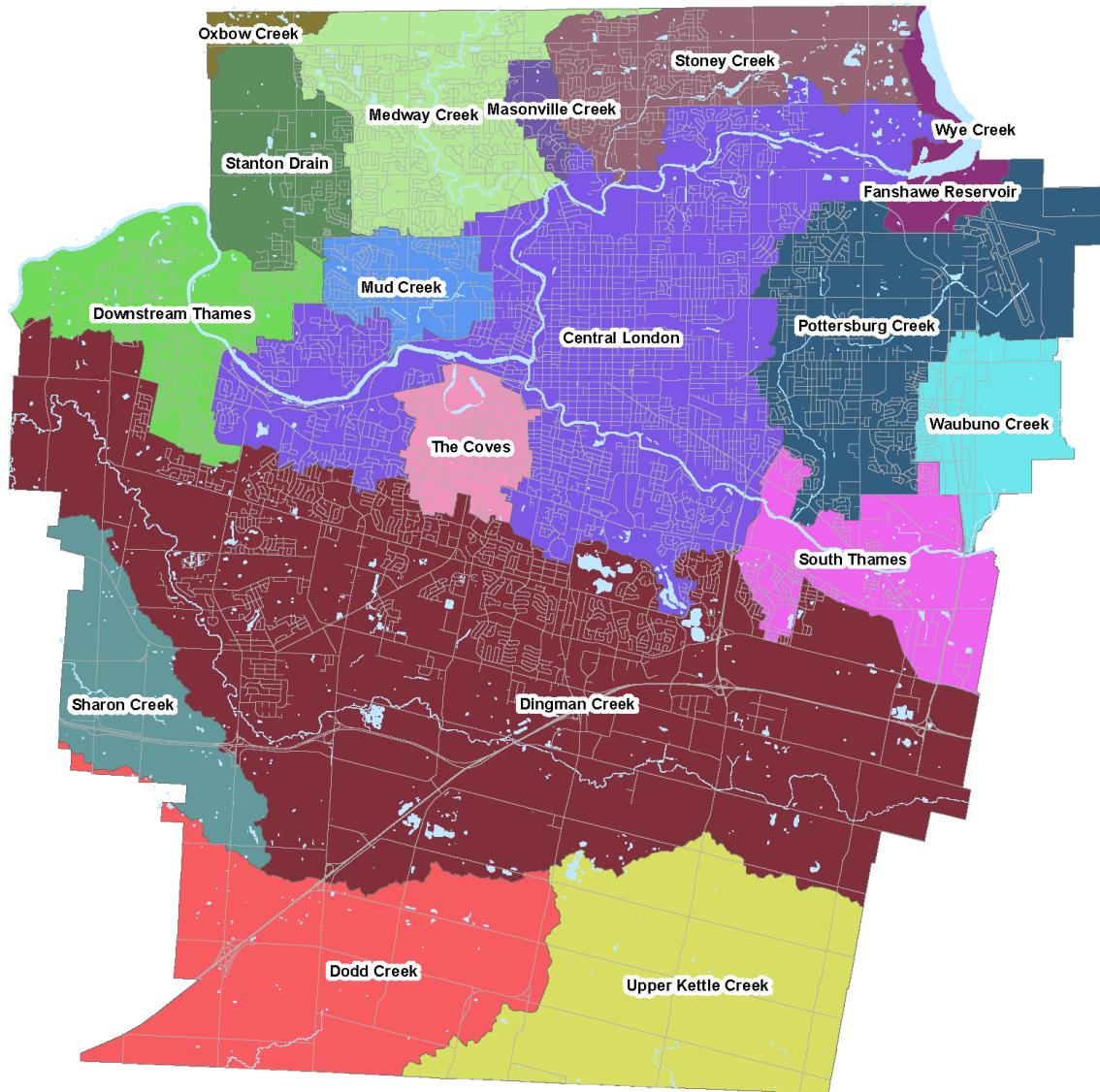
As outlined in *The London Plan*, ESA are relatively large areas in the City that contain Natural Heritage Features and Areas and perform ecological functions that warrant their retention in a natural state. ESA often capture clusters of NHS Features and Areas as shown in **Figure 3.1**.

- The criteria for evaluation of ESA are described in **Section 3.2.1** below.
- The criteria for evaluation of NHS Features that may be captured within an ESA – namely Significant Woodlands and Woodlands, PSW and Wetlands, SWH, and Significant Valleylands and Valleylands – are outlined in **Section 3.1**, **Section 3.3**, **Section 3.4** and **Section 3.5** respectively.

The approach for delineation of wetland features, woodland features, valleyland features and SWH features is described in **Section 4**.

In the City of London there are ESA which have been confirmed as meeting the established criteria (which are included in the Green Space Place Type of *The London Plan*) and Potential ESA that still require evaluation (which are included in the Environmental Review (ER) Place Type of *The London Plan*). ESA that clearly satisfy two (2) or more of the criteria (as outlined in **Section 3.2.3**) will be considered for recognition as an ESA.

The following criteria are to be applied to all potential ESA delineated on Map 5 of *The London Plan*.


3.2.1 City of London Subwatershed Regions Policy and Context

The policy framework for the identification and evaluation of ESA is outlined in *The London Plan* – Policies 1367_ to 1371_. These policies and the following guidelines should be considered in conjunction with the guidance in **Section 4 (Section 4.6 and Section 4.8, in particular)**.

The following interpretations of the application guidelines should be noted:

- These ESA guidelines are to be applied to Potential ESA. Please refer to **Section 4.6** and **Section 4.8** related to boundary delineation to determine whether Potential ESA(s) form part of an ESA. If a Potential ESA is not included in an ESA boundary, it must be assessed as a separate NHS Feature.
- The same NHS Feature cannot be counted to satisfy more than one criterion for a given area. However, each feature shall be evaluated and listed under the criterion that it meets.
 - For example, if a community is identified as rare or uncommon, it would meet Criterion 1 listed below. If this community also contained high-quality, natural landform-vegetation communities representative of typical pre-settlement conditions, it would also meet Criterion 2 listed below. The community would be listed under both criteria but would only be applied towards the evaluation of significance for one of the criteria.

- However, if there were other high-quality, natural landform-vegetation communities representative of typical pre-settlement conditions identified within the Potential ESA, Criterion 2 could also be applied towards the evaluation of significance.
- “Regional level” refers to the lands covered by the City of London subwatershed studies, including Oxbow Creek Subwatershed, Dingman Creek Subwatershed and the Central Area Subwatershed. For mapping of subwatersheds, refer to City of London Subwatersheds mapping (see **Figure 3.3**) and / or submit a GIS Data Request to the City of London Geomatics Department.
- The term “County” refers to Middlesex County.
- Appropriate expertise, provided by a qualified professional (as outlined in **Section 2.3**) may be required to apply certain elements of Criterion 1 (unusual landforms), Criterion 4 (significant hydrological processes), Criterion 5 (aspects of biodiversity), Criterion 6 (important wildlife habitat or linkage functions), and Criterion 7 (significant habitat). Each time a criterion is applied, the rationale and source of expertise should be documented.
- The minimum data requirements to apply certain measures of a criterion, such as diversity indices, are detailed in the guidelines below, as well as the Data Collection Standards outlined in **Appendix C**. A standardized approach to data collection will enable more consistent application of these indices and can inform long term planning.
- For documentation of rare community and species status, the most up-to-date resources and authorities will be utilized. Lists of rare and unusual communities and species will be considered open-ended, since data collected from other natural areas inventories may result in additions and deletions.
- For vegetation communities, the ELC system for Southern Ontario (Lee *et al.*, 1998) will be the standard protocol used to differentiate natural vegetation communities within NHS Features and Areas.
- The focus of each criterion is to identify Natural Heritage Features and Areas and / or feature clusters of significance for protection.

Legend

Watercourses	Medway Creek	Stoney Creek
Central London	Mud Creek	The Coves
Dingman Creek	Oxbow Creek	Upper Kettle Creek
Dodd Creek	Pottersburg Creek	Waubuno Creek
Downstream Thames	Sharon Creek	Wye Creek
Fanshawe Reservoir	The Coves	
Masonville Creek	South Thames	
Stanton Drain	Upper Kettle Creek	

Figure 3.3: City of London Subwatershed Regions

3.2.2 Environmentally Significant Areas (ESA) Evaluation Criteria

Candidate areas that clearly satisfy two (2) or more of the following seven (7) criteria will be considered for recognition as ESA (as per *The London Plan* policy 1371).

The London Plan 1371 – Criterion 1:

The area contains unusual landforms and / or rare to uncommon natural communities within the country, province or London subwatershed region.

Background: Identification of landforms that reflect geological processes or features instrumental in forming London's landscape or communities that have limited occurrence, abundance or range (distribution) is important for the maintenance of biodiversity including ecosystem, landscape, species and genetic diversity.

Application: Unusual Landforms

National level: Areas identified by recognized experts as geologically significant (e.g. Ontario Geological Survey)

Provincial level: Provincially significant Earth Science ANSI

Regional level: Expert opinion (e.g., Dreimanis, 1964; Dreimanis, 1970) and data obtained through the Subwatershed Studies

Rare to Uncommon Natural Communities

National/Provincial level: Significance as interpreted from the Carolinian Zone community Subnational (Ontario) S-Ranks outlined in the Natural Heritage Information Centre (MNRF, 2020) or subsequent updates and / or amendments. A natural community is considered rare to uncommon if the S-Rank is between S1 and S3. Community identification can be determined through existing data and / or data obtained from the Subwatershed Studies. Rare vegetation communities can also be identified as evaluated through the SWH Criteria Schedules for Ecoregion 7E (MNRF 2015a).

Regional level: Regionally significant Earth Science ANSIs and vegetation communities identified as rare to uncommon based on an analysis of the London Subwatershed Studies Life Science Inventories (Bowles *et al.*, 1994) or the best available data. This list will be open-ended to incorporate any new data collected from the London subwatershed region. It will include communities or “species assemblages” that have limited distribution and occurrence within the region (e.g. fens, older growth forests, boreal species assemblages), or that are at the limits of their distributional ranges (e.g. bogs), or that are remnants of original habitat (e.g. prairie and oak savanna). Vegetation communities meeting the criteria for SWH as outlined in *The London Plan* – Policy 1354 are also considered rare.

Source References: Bogs, fens (Riley, 1989), or prairie/savannas (Riley and Bakowsky, 1993) may be identified through the presence of

assemblages of indicator species. Older growth forests are evaluated in the context of the London subwatershed region, the top five percent of the oldest stage forests (climax and sub-climax) that are relatively undisturbed. Boreal indicator species will be defined by a specific list based on information obtained through the London Subwatershed Life Science Inventories (Bowles *et al.*, 1994).

There may be special cases where rare to uncommon vegetation communities are described by the presence of Nationally, Provincially, or Regionally rare plant species, if they are abundant or dominant (as described in **Section 8**) in one or more strata (i.e., canopy, understorey, etc. as described in Lee *et al.*, 1998). In these situations, the presence of the rare plant would not be used to meet **Criterion 7** for rarity.

The London Plan 1371 - Criterion 2:

The area contains high-quality natural landform-vegetation communities that are representative of typical pre-settlement conditions of the dominant physiographic units within the London subwatershed region, and / or that have been classified as distinctive in the Province of Ontario.

Background: The focus of this criterion is to identify representative examples of the full range of landform-vegetation types that occur on each of the five dominant physiographic units within the London subwatershed region (**Figure 3.1**). By representing all landform-vegetation associations in a protected areas system a significant portion of the biodiversity of an area will be maintained (Crins, 1996). By capturing representative native vegetation in the NHS, examples of pre-European settlement landscapes are also protected.

This Criterion differs from Criterion 1 with the emphasis on representation, size, and quality. The landform-vegetation communities do not have to be rare as long as they are the best examples of their type.

The dominant physiographic units are represented by the five glacial geomorphological features based on the Ontario Geological Survey Map P.2715 (Chapman and Putnam, 1984).

The presence of disturbance indicators does not necessarily disqualify a site from meeting this criterion if other factors relevant to this criterion are satisfied or if it is the only representative example. Similarly, lack of disturbance does not necessarily qualify a site. Disturbance indicators are used as a relative measure to rank sites.

Application: Sites representing the same landform-vegetation types will be ranked in a relative manner to select the best examples. Priority should be given to designating the best examples, with respect to size and quality. In addition, similar landform-vegetation community types will be compared only within the same physiographic unit (e.g. till moraine; till plain; sand

plain; spillway; beach ridge)

Distinctive and natural landform-vegetation communities are defined at Provincial or Regional levels:

Provincial level: Presence of Provincially significant ANSIs as identified in Land Information Ontario (LIO). Presence of PSW as defined by the OWES (MNRF, 2022).

Regional level: All wetlands within the City of London are protected in accordance with *The London Plan*.

Presence of regionally significant ANSIs identified in LIO.

Presence of Ecosite vegetation community types (as outlined in ELC; Lee *et al.*, 1998) of high quality on distinctive topographic, landform, or cultural features, applied through existing data and data obtained from the Subwatershed Studies.

The following community types are examples, and thus not an exhaustive list:

- Moist-Fresh Black Maple Deciduous Forest Type on bottomland;
- Fresh Hemlock Coniferous Forest Type on valley slope;
- Fresh Sugar Maple-Beech Deciduous Forest Type on tableland; and
- Fresh Sugar Maple-Beech Deciduous Forest Type on valley slope.

Comments: Ecosite vegetation communities, as classified through ELC (Lee *et al.*, 1998), can be considered high-quality and thus applicable for this criterion based on the following:

- Rare vegetation communities as evaluated through the SWH Criteria Schedules for Ecoregion 7E (MNRF, 2015a);
- Vegetation communities meeting the criteria for SWH as outlined in *The London Plan* – Policy 1354; and,

Vegetation communities with an SRank 1-3 as described by the NHIC.

The London Plan 1371 – Criterion 3:

The area, due to its large size, generally more than 40 hectares, provides habitat for species intolerant of disturbance or for species that require extensive blocks of suitable habitat.

Background: The focus of this criterion is to identify large contiguous blocks of natural features and / or “feature clusters” that cover an extensive area.

The presence of large contiguous blocks of forested habitat are used as an indicator of forest-interior conditions which are required by certain forest-interior and area-sensitive species. The size, shape, and

continuity of these forested areas are important factors for the identification of forest interior conditions

Large NHS Features, or feature clusters are important for maintaining frequency of habitat across a landscape and genetic diversity of populations among interacting NHS Features and Areas.

Application: This criterion can be met in any one (1) of two (2) ways:

1. The size of a natural heritage feature is generally greater than 40 ha or the size of natural heritage feature cluster is generally greater than 40 ha and the natural heritage features are not interrupted by gaps wider than 20 m; or,
2. The area either a) contains some interior forest habitat which is at least 100 m from all forest edges and is not interrupted by gaps wider than 20 m, OR b) there is confirmed presence of one or more breeding birds which are either forest-interior species or area-sensitive species.

Source References: Freemark and Collins (1992) and Sandilands (1997) for forest interior species; Magee (1996) updated from (Hounsell, 1989) for area-sensitive species.

Comments: For natural heritage features or natural heritage feature clusters straddling the City boundary, the area determination shall be based on the whole feature or feature cluster since this represents the ecological unit to which the criterion is applied.

The minimum size limit will result in the inclusion of only the largest areas in the London subwatershed region, as determined through available data and data from the subwatershed studies. [Note: Of 25 ESA or Potential ESA, four (4) fell within the range of 150 to 500 ha and two (2) were greater than 500 ha].

The London Plan 1371 - Criterion 4:

The area, due to its hydrologic characteristics, contributes significantly to the healthy maintenance (quality or quantity) of a natural system beyond its boundaries.

Background: The focus of this criterion is to identify natural areas that contribute significantly to the quantity and quality of groundwater and surface water resources in the region. Factors such as the magnitude of the area covered or volumes of water involved and the importance of the resource should be used to assess the significance.

Landscape position and terrain setting should also be used to evaluate the significance of recharge areas.

Application: Presence of indicators of hydrological processes noted during subwatershed studies include but are not limited to:

- water storage;
- water release (discharge);
- wetlands;
- water quality improvement;
- first order stream / headwater;
- groundwater recharge and discharge areas identified on subwatershed maps as high potential; and,
- water conveyance (i.e. floodplain and overland flow paths).

For wetlands, those that meet three or more of five key hydrologic functions as identified in the hydrology section of the OWES (MNRF, 2022) would be considered significant by the City of London. [Threshold was determined based on a review of ten evaluated wetlands within the City of London].

For areas of significant groundwater recharge, where large areas have been identified as high potential, it is not expected that the entire area identified would qualify for this criterion. To be considered for inclusion as part of an ESA, the recharge or discharge area must also be part of a NHS Feature and / or Area as identified in a subwatershed study or support naturally succeeding vegetation communities.

Permanent, non-channelized first-order streams containing Type I-II habitat (DFO, 1994) qualify for inclusion as part of the ESA.

Source References: Sources of information include but are not limited to wetland and hydrologic information presented by the UTRCA and by the Subwatershed Studies Aquatic Resources Management Reports for Vision '96 Subwatersheds (Beak Consultants, 1995).

The London Plan 1371 – Criterion 5:

The area has a high biodiversity of biological communities and / or associated plant and animal species within the context of the London subwatershed region.

Background: The focus of this criterion is to identify areas that demonstrate high variability and variety of plants, animals, and communities or habitats. The primary attributes of “biodiversity” include “compositional”, “structural”, and “functional” diversity.

Application: For vegetation communities and species in the London subwatershed region, biodiversity can be measured in relative terms (e.g., based on analysis of the Natural Heritage Features and Areas surveyed, the top percentage of Natural Heritage Features and Areas that support the highest number of community types, or native species of plants, birds, mammals, herpetofauna, etc.).

Source Reference:	Subwatershed Studies Life Science Inventories (Bowles et al., 1994). For native species, Species-Area Curves may also be used to measure diversity. Areas where the actual number of species exceeds the expected number are considered diverse. Only native species will be used in the calculation.
	Habitat diversity may also be used as supporting evidence of diversity (e.g., for herpetofauna the presence of vernal pools, woodland-pond interface, downed woody debris).
Comments:	Evaluation of biodiversity should consider the variability of data obtained through different levels of field efforts. Vegetation community classification will be based on <i>An Ecological Land Classification for Southern Ontario</i> (Lee et al., 1998).

The London Plan 1371 – Criterion 6:

The area serves an important wildlife habitat or linkage function.

Background: The focus of this criterion is to identify significant wildlife habitats or linkages between NHS Features as identified in SWH Criteria Schedule for Ecoregion 7E. These habitats and linkages contribute to overall landscape richness and provides habitat for wildlife (MNRF, 2015a).

Application: Important wildlife habitat functions are outlined in depth in the SWH Criteria Schedule for Ecoregion 7E (MNRF, 2015a) and are grouped under the following four broad categories:

- Seasonal Concentration Areas of Animals;
- Rare Vegetation Communities or Specialized Habitat for Wildlife;
- Habitat for Species of Conservation Concern; and,
- Animal Movement Corridors.

The site fulfills an external linkage or corridor function between two or more significant habitats. The value of a linkage or corridor will be based upon characteristics such as habitat, shape, width, and length. Linkage function and attributes are described in the *Natural Heritage Reference Manual* (MNRF 2010b). Linkages may include, but are not limited to, the following:

- early successional woodlands and plantations;
- water bodies, watercourses and valleylands;
- riparian zones;
- steep slopes and groundwater discharge areas;
- old fields;
- hydro and pipeline corridors;
- abandoned road and rail allowances; and,
- recreational greenway parks.

Source References: Provincial files and maps; subwatershed studies; other data obtained through site specific field investigations; MNRF (1997); Riley and Mohr (1994).

Comments: Linkages should connect significant habitat areas for native species that will benefit from the presence of this linkage. Linear habitats (such as fencerows) that may have intrinsic habitat value, but do not connect larger protected areas, and those that are human imposed with no regard for the natural landscape system (such as channelized watercourses) should not be considered linkages (Harris and Scheck, 1991). Linkages and corridors, while also providing habitat or wildlife value, are important because they connect more substantive NHS Feature clusters.

The London Plan 1371 – Criterion 7:

The area provides significant habitat for rare, threatened, or endangered indigenous species of plants or animals that are rare within the country, province, or county.

Background: The focus of this criterion is to identify populations of rare, threatened or endangered species for protection. This criterion is focused on SAR and rare species not covered under significant wildlife habitat under Criterion 6 (e.g., species of conservation concern).

Definitions of significant habitat are given under each of the categories of vascular plants and animals. The most current sources of rarity designations will be used. Lists of rare species are considered open-ended as new information will result in amendments over time. Data from the Subwatershed Studies Life Science Inventories (Bowles *et al.*, 1994) were used to update Middlesex County status for plants.

Application: Plant Species

Habitat for plant species should be indicated by the presence of a population. The presence of a single specimen of a rare plant will not qualify an area under this criterion.

Federal SAR : COSEWIC Status reports

NHIC Global Ranks (GRANK) for Rare Vascular Plants (Oldham, 1994a) and Mosses (Oldham, 1994b).

- Species listed with a global rank of G1 to G3
- SAR listed under the *Species at Risk Act*

Rare Vascular Plants in Canada (Argus and Pryer, 1990), Database of Vascular Plants of Canada (VASCAN; Canadensys, 2020)

Provincial SAR: NHIC Provincial Rank (SRANK) for Rare Vascular Plants (Oldham, 2009; Oldham, 2017) and for Mosses (Oldham, 1994b).

- Species listed with a provincial rank of S1 to S3
- Provincially designated SAR in Ontario

Atlas of the Rare Vascular Plants of Ontario (Oldham and Brinker, 2009;

Oldham, 2017) COSSARO Status reports

Middlesex County Rare Species: Status of the Vascular Plants for Ecoregion 7E (Oldham, 2017)

- Rare in SW Ontario: SWFLORA database for Subwatershed Life Science Inventories (Bowles *et al.*, 1994)
- Rare in Middlesex County: Species recorded that have 1-4 records (stations) in Middlesex County. Note: Plant records collected from the subwatershed studies were used to update the rare status at the county level.

Animal Species

Habitat for animal species should be interpreted to mean areas where one (1) or more rare species are resident or breeding in the area, and / or making use of the area for a key component of their life cycle (e.g., territory, nesting, critical feeding grounds or wintering concentrations). Documentation of repeated (multi-year) use of an area by a species adds to the significance of the habitat. For breeding birds, the presence of suitable habitat for territory, nesting and feeding; for butterflies, the presence of suitable habitat including the host plants upon which they feed; for mammals, the presence of signs of active use of an area (e.g. dens, bedding areas, well-used trails, scat, etc.); for herpetofauna, the presence of suitable habitat for breeding (e.g., vernal pools, downed woody debris) and hibernating (presence of hibernacula).

Federal SAR: COSEWIC Status reports

NHIC Global Ranks (GRANK) for amphibians and reptiles, mammals, birds, insects (e.g., butterflies, moths, odonata, hymenoptera, etc.) and Fishes

- Species listed with a global rank of G1 to G3
- SAR listed under the *Species at Risk Act*

Provincial SAR: NHIC Provincial Rank (SRANK) for amphibians and reptiles, mammals, birds, insects, and fishes

- Species listed with a provincial rank of S1 to S3
- Provincially listed SAR in Ontario
- COSSARO Status reports

Middlesex County Rare Species: Southwestern Ontario regional status based on records in provincial atlases:

- mammals – e.g., Atlas of the Mammals of Ontario (Dobbyn, 1994)
- breeding birds – e.g., Atlas of the Breeding Birds of Ontario (OBBA) 2001-2005 (OBBA, 2007)
- insects – e.g., Ontario Butterfly and Moth Atlases (Toronto Entomologists' Association, 2020)

- herpetofauna – e.g., Ontario Reptile and Amphibian Atlas (Ontario Nature, 2019)

Middlesex County status of rarity is based upon the most recent existing county records:

- mammals - provincial mammal atlas and records from the appropriate Provincial District office
- breeding birds - open ended lists from the provincial bird atlas (OBBA, 2007) and best available county information;
- insects - best available county information;
- herpetofauna - status of amphibians and reptiles in Middlesex County (Ontario Nature, 2019)

Comments: Other non-vascular plant (e.g., mosses) and faunal groups (e.g., Odonata) should be included where and when the information is available.

3.3 Provincially Significant Wetlands, Wetlands and Unevaluated Wetlands

Policies outlined in the *Provincial Planning Statement* and *The London Plan* (Policies 1332_ to 1336_) protect Provincially Significant Wetlands (PSW) by not permitting development and site alteration within or adjacent to them. These policies also protect Wetlands and adjacent lands unless it has been demonstrated that there will be no negative impacts on the natural feature and their ecological functions.

There are three (3) categories of wetlands within the City of London protected as per *The London Plan* (Policies 1330_ to 1336_) and the applicable Conservation Authority policies and regulations:

- Provincially Significant Wetlands (PSW)
- Wetlands, and
- Unevaluated Wetlands.

PSW (on the City's Map 5 and / or in the Province's mapping data layers) may be re-evaluated by proponents in accordance with the Ontario Wetland Evaluation System (OWES) (MNRF, 2022) as outlined in the *Natural Heritage Reference Manual*. The Province remains responsible for reviewing and updating any additions, deletions or refinements to identified PSW.

Assessments under the OWES system must be done by a qualified professional who is certified and experienced in application of the system.

As stated in the OWES manual:

“The results of evaluations made under this system are primarily used by a municipality or county government as part of the municipal planning process where there is a need to know: (a) whether a specific wetland has been evaluated or not, to assist in determining if it should be evaluated, and (b) whether a wetland has been identified as a PSW” (MNRF, 2022).

As stated in the current OWES manual (MNRF, 2022, pg. 4), once a wetland evaluation, re-evaluation or mapping update is complete, the evaluator must:

- a. Send the final evaluation (including associated wetland boundary mapping) to the appropriate planning authority (i.e., in this case, the City of London Ecology Staff at plandev@london.ca) for record keeping purposes;
- b. Notify any affected landowners of the property or properties containing the wetland of the final wetland boundary and wetland status⁴; and
- c. Forward a copy of the final digital wetland boundary mapping and the wetland's status (e.g., significant or not) to the MNRF within 30 days to be uploaded to Land Information Ontario (LIO).

Unevaluated Wetlands mapped in the City of London (on the City's Map 5 and / or in the Province's mapping data layers) are to be evaluated for significance using the OWES as outlined in the *Natural Heritage Reference Manual*.

Unmapped wetlands identified through the vegetation community assessment process may need to be evaluated for significance using the OWES system. These include the following ELC Community Series:

- SWAMP - deciduous swamp (SWD), mixed swamp (SWM) or coniferous swamp (SWC);
- FEN – open fen (FEO), shrub fen (FES) and treed fen (FET)
- BOG – open bog (BOO), shrub bog (BOS) and treed bog (BOT)
- MARSH – meadow marsh (MAM), shallow marsh (MAS)
- SHALLOW WATER – submerged shallow aquatic (SAS), mixed shallow aquatic (SAM) and floating-leaved shallow aquatic (SAF), and
- OPEN WATER (OAO).

Guidance for boundary delineation of wetlands is provided in **Section 4**.

Wetlands evaluated for provincial significance that do not meet the criteria for designation as a PSW (per OWES), will be identified as "Wetlands" within the City of London, irrespective of size or condition.

PSW, Unevaluated Wetlands and other Wetlands will be added, removed or refined on Map 5 – Natural Heritage in *The London Plan* as new information becomes available. PSW and Wetlands are also mapped as Green Space Place Type on Map 1, while Unevaluated Wetlands are mapped as Environmental Review.

Wetlands (including PSW) and their associated areas of interference are also regulated by the local Conservation Authorities and may also require consideration under the

⁴ *Evaluators must notify landowners that a wetland evaluation is being undertaken for a wetland located on their property. Landowner permission must be obtained before accessing private property to carry out wetland evaluation field work. Arrangements with landowners for access to private property must occur prior to the field work.* (MNRF 2022)

applicable Conservation Authority policies and regulations (Conservation Ontario, 2024), as well as the Natural and Human-made Hazards Policies in *The London Plan*.

For more information related to the evaluation of significant wetlands using the OWES, and its application under the *Provincial Planning Statement*, refer to the *Natural Heritage Reference Manual* (MNRF, 2010b) as well as Ontario's wetland evaluation website.

3.4 Significant Wildlife Habitat (SWH)

Policies outlined in the *Provincial Planning Statement* and *The London Plan* (Policy 1353_) protect Significant Wildlife Habitat (SWH) by not permitting development and site alteration within or in the lands adjacent to SWH unless it has been demonstrated that there will be no negative impacts on the natural features or their ecological functions.

The London Plan (Policies 1352 and 1354) provides key considerations for the determination of significance for wildlife habitat within the City of London. As per these policies, candidate SWH shall be screened for and assessed utilizing the process outlined in the *Natural Heritage Reference Manual*, specifically utilizing the *Significant Wildlife Habitat Technical Guide* (MNRF, 2000), in conjunction with the criteria in the supplementary *Significant Wildlife Habitat Criteria Schedules for Ecoregion 7E* (MNRF, 2015a) and the criteria outlined in Policy 1354_1 through 1354_3.

With respect to Policy 1354_3, passive recreation opportunities refer to activities such as hiking, photography and eco-tourism.

Within the City of London, areas confirmed as SWH are to be designated as a NHS Features within the Green Space Place Type and included in Map 1.

3.5 Significant Valleylands and Valleylands

Valleylands, as defined in the *Provincial Planning Statement*, refers to natural areas that occur in a valley or landform depression with standing or flowing water for a period of the year. Valleylands include features such as rivers, streams, other watercourses, and ravines. Valleylands provide many important ecological functions (e.g., wildlife habitat, water storage/transport), as well as linkages/connectivity between other NHS Features and Areas.

Policies for the identification and protection of Significant Valleylands and Valleylands are provided in *The London Plan* (Policies 1344 to 1349) and should be considered in conjunction with the applicable Conservation Authority policies and regulations. The policies provide considerations for the identification and determination of significance for valleylands based on the evaluation of landform-related functions and attributes, ecological features and restored ecological functions.

Table 8-1 in the *Natural Heritage Reference Manual* outlines specific standards on the evaluation of function criteria for valleylands (e.g., surfacewater functions, distinctive landforms, habitat value, etc.). These criteria should be referenced when determining

the significance of valleylands in conjunction with the guidance provided in *The London Plan*.

The London Plan also includes direction (Policy 1350) for the determination of valley corridor width. Supplemental guidance related to boundary delineation for valleylands is described in **Section 4.2.2** of the EMG.

Within the City of London, Significant Valleylands are designated as a NHS Feature within the Green Space Place Type, therefore Green Space Place Type policies outlined in *The London Plan* are also applicable. Valleylands that have been identified but not yet assessed are identified within the Environmental Review Place Type, pending evaluation. Note that air photo interpretation and / or site investigations may identify additional valleyland features.

In consultation with the applicable Conservation Authority, the City of London may consider alterations to river or stream valleys and watercourses to enhance, rehabilitate, and / or restore the system (e.g., bank stabilization, riparian plantings, and barrier removal) in accordance with Policy 1351.

4. Boundary Delineation of Natural Heritage Features and Areas

Delineation of Natural Heritage Features and Areas requires an understanding of both technical and policy elements related to the feature and / or area being considered.

Ecological boundary delineation is an important part of the planning process as it determines what will be considered for further evaluation. The City of London recognizes that it is important for the approaches taken to be as transparent and consistent as possible both to preserve the integrity of the City's Natural Heritage System (NHS) and ensure the planning process is being implemented appropriately.

Ecological boundary delineation is required before natural features and areas can be evaluated for significance, and may be reviewed when site alteration or development is proposed adjacent to Natural Heritage Features and Areas (refer to **Figure 3.1** for a complete list) that have already been identified and confirmed.

This section provides guidelines for delineating the ecological boundaries of Natural Heritage Features and Areas, including currently mapped and unmapped features. It specifically includes:

- An overview of the jurisdictional responsibility and policy direction related to ecological boundary delineation for each natural heritage feature and area in the City (**Section 4.1**)
- General guidance for delineation of Natural Heritage Features and Areas for which the City of London is the planning authority (**Section 4.1**); and,
- Natural Heritage Feature and Area boundary delineation guidance for:
 - Wetland features, Wetlands and Provincially Significant Wetlands (PSW), including consideration for Critical Function Zones (CFZs) (**Section 4.2**)
 - Woodland features, Woodlands and Significant Woodlands (**Section 4.3**)
 - Valleyland features and Significant Valleylands (**Section 4.4**)
 - Wildlife habitat features and Significant Wildlife Habitat (SWH) (**Section 4.5**)
 - Environmentally Significant Areas (ESA) (**Section 4.6**)
 - Unevaluated or Other Vegetation Patches (**Section 4.7**) and,
 - Additional Natural Heritage Feature and Area boundary guidance including some consideration for linkages between NHS Features (**Section 4.8**).

Notably, the boundaries delineated for NHS Features do not include any setbacks, Ecological Buffers, adjacent lands or areas of interference (Conservation Ontario, 2024). Guidance for Ecological Buffers is provided in *The London Plan* (Policies 1412_ to 1416_) and supplemented with the guidance in **Section 5** of these EMG.

In addition, these boundary guidelines are focused solely on ecological boundaries irrespective of property lines. However, it is understood that while Natural Heritage Features and Areas may cross property boundaries, that field verification of such boundaries may be limited to the subject property.

The purpose of these guidelines is:

1. To document and describe a repeatable process based strictly on ecological considerations, leading to credible mapping which can be used for planning, protection and monitoring;
2. To provide the basis for resolving variations between different scales and types of mapping; and,
3. To establish a common understanding and approach between planners, consultants, and the public regarding the ecological aspects of boundary delineation for natural features.

4.1 Policy Context and General Guidance

A few components of the City's NHS may need their boundaries confirmed by the appropriate federal or provincial agency (i.e., Fish Habitat, habitat of Endangered or Threatened species, ANSI), or by qualified professionals in accordance with established guidance (i.e., PSW), while the boundaries of other NHS components are the City's responsibility to confirm (i.e., Significant Woodlands and Woodlands, Wetlands, Significant Valleylands and Valleylands, ESA, Upland Corridors and Naturalization Areas, as well as Ecological Buffers).

The following applies to any natural heritage feature or area including Unevaluated Wetlands, Unevaluated Vegetation Patches and Other Vegetation Patches, mapped or unmapped - to be considered as part of a natural heritage study through the planning process.

1. The term natural heritage “feature” refers to an area that contains natural vegetation, along with associated ecological functions. Natural heritage features are considered as one unit for the purpose of evaluation (as described in **Section 3**) and can be comprised of multiple contiguous or overlapping natural heritage features types (e.g., woodland, wetland, valleyland, wildlife habitat, etc.). The initial feature boundary can be drawn at the interface between naturalized vegetation and the adjacent lands, based on a desktop assessment, and then refined with a field assessment and with consideration for the feature-specific guidance provided in the following sections.
2. The ecological boundary is determined based on ecological principles, including capturing inclusions, refined through the application of these guidelines, and without regard for property lines. Boundary delineation guidelines shall not be used to separate a natural feature into specific parts that can be treated individually as having lesser or greater significance and / or contribution to ecological function.
3. Application of these guidelines should be illustrated at a map scale of 1:10,000, using aerial photography and other tools as necessary. Further refinements will be made at a smaller scale (e.g., 1:5,000 or 1:2,000 scale), and may require field investigations. For the completion of a natural heritage study, boundaries must be geo-referenced to the best accuracy possible.
4. The diagrams and examples that form part of the conditions for boundary delineation

provided below are intended to convey the intent of the guidelines. While not drawn to scale, these diagrams do depict the relative sizes and distances of the areas shown. A legend has been included to aid in the interpretation of the diagrams.

5. In the application of these guidelines, the most recent map sources, current and historical aerial photographs, and ecological background studies/documents should be used to verify the initial boundary.

4.2 Wetland Feature, Wetland and Provincially Significant Wetland (PSW) Delineation

The overarching policy framework for PSW, Wetlands, and Unevaluated Wetlands is outlined in *The London Plan* – Policies 1330 to 1336.

Wetlands of any size must be identified, delineated and screened in accordance with both City and Conservation Authority policies and regulations. Screening must consider the feature's associated adjacent lands (as per *The London Plan* Table 13 or **Table 2.1** in these EMG) and the areas of interference associated with wetlands (Conservation Ontario, 2024).

The first step in delineating wetland features is to define the wetland types and delineate these vegetation communities approximately utilizing the ELC System (Lee et al., 1998). The second step is to confirm and, if needed, refine the delineation of internal boundaries (e.g., between different types of wetlands, boundary between wetland and upland communities) and external boundaries (e.g., between wetlands and non-natural land uses) using the Ontario Wetland Evaluation System (OWES) (MNRF, 2022).

The OWES provides in-depth instructions on the delineation of internal and external boundaries and generally involves determining wetland boundaries within areas of gradual ecological change (i.e., transitional areas, eco-tones) utilizing a combination of the following information:

- Transition (i.e., a 50% split) between wetland and upland plant community (percent cover);
- Topography, such as elevation and slope; and,
- Soil substrate.

Wetland boundaries should be scaled to 1:10,000 for mapping purposes, with the width of the boundary line being scaled to cover the equivalent of 15 m in real world application (MNRF, 2022).

The wetland boundary delineation must be conducted by a qualified professional (i.e., a person certified and experienced in the application of OWES) and may need to be confirmed and surveyed in the field with a City Ecologist and the applicable Conservation Authority, at the City's and applicable Conservation Authorities' discretion. Existing boundaries of the PSW remain as mapped unless any revisions are required based on a comprehensive OWES re-evaluation.

Beyond the wetland community boundaries, the Critical Function Zones (CFZ) must also be considered in the assessment for constraints mapping and site planning. CFZ are non-wetland areas within which biophysical functions or attributes directly related to

the wetland occur (Environment Canada, 2013). Effectively, the CFZ is a functional extension of the wetland into the upland. For example, this could include: upland grassland nesting habitat for waterfowl (that use the wetland to raise their broods), upland foraging areas, overwintering and nesting habitat for reptiles and amphibians. Foraging areas for frogs and dragonflies, and / or nesting habitats for birds that straddle the wetland-upland ecozone could also be considered part of the CFZ where they are contiguous with the wetland feature.

CFZ do not replace the functions of an Ecological Buffer. For more in-depth information on determining CFZ, refer to Environment Canada (2013).

4.3 Woodland Feature, Significant Woodland and Woodland Delineation

The overarching policy framework for the identification and evaluation of Significant Woodlands and Woodlands is outlined in *The London Plan* – Policies 1337 to 1343, 1383 and 1386, and includes local criteria aligned with the *Natural Heritage Reference Manual*.

The *Provincial Planning Statement* protects Significant Woodlands by not permitting development and site alteration within these features or on adjacent lands unless it has been demonstrated that there will be no negative impacts on this natural feature and its ecological functions.

Most potential Woodlands and Significant Woodlands are shown as Unevaluated Vegetation Patches on Map 5 – Natural Heritage and as Environmental Review Place Type on Map 1 in *The London Plan*. However, as identified in *The London Plan* – Policy 1316, the absence of Unevaluated Vegetation Patches from the aforementioned mapping does not necessarily mean that Other Vegetation Patches also requiring consideration do not exist. Therefore, proponents must assess the subject lands in question to screen for the presence of any Unevaluated Vegetation Patches and / or Other Vegetation Patches larger than 0.5 ha.

As per the *Provincial Planning Statement* definition (see the Glossary in **Section 8**), woodland features are “treed areas”. Using the Ecological Land Classification (ELC) system for southern Ontario (Lee et al., 1998), individual vegetation communities are typically delineated as discrete Community Series, Ecosite or Vegetation Type polygons. One or more ELC polygons can make up a woodland feature.

In addition, according to the ELC system for southern Ontario (Lee et al., 1998), a treed area is any community with tree cover greater than 10%. As such, the following ELC Community Classes and Series are potential components of woodland features:

- **FOREST COMMUNITIES** - Deciduous Forest (FOD), Mixed Forest (FOM) or Coniferous Forest (FOC);
- **SWAMP COMMUNITIES** (Treed Wetlands) - Deciduous Swamp (SWD), Mixed Swamp (SWM) or Coniferous Swamp (SWC);
- **CULTURAL TREED COMMUNITIES** - Cultural Woodland (CUW), Cultural Savanna (CUS) or Cultural Plantation (CUP); and

- Other less common treed ELC community types that may or may not occur in London including Treed Alvar (ALT), Treed Beach/Bar (BBT), Treed Bluff (BLT), Treed Cliff (CBT), Treed Rock Barren (RBT), Treed Sand Barren (SBT), Treed Sand Dune (SDT), Treed Talus (TAT), Tallgrass Woodland (TPW), Tallgrass Savannah (TPS) and Tallgrass Woodland (TPW).

Each woodland feature must consist of one or more ELC polygons of the community types listed above that are contiguous or not bisected by gaps of more than 20 m (e.g., a road, utility corridor).

Notably, woodland features generally meeting the structural and compositional characteristics of any of the ELC Community Series listed above, but not meeting the tree cover thresholds (see **Section 8** Glossary definitions and the supporting ELC manual (Lee *et al.*, 1998)) due to anthropogenic and/or environmental impacts sustained over the past five (5) years (e.g., tree harvesting for personal use, removal of trees deemed high-risk due to severe pest infestation or damage caused by ice storm) will still be considered woodland features. In cases and/or areas where the City and proponents disagree on the extent and/or presence of a woodland feature, and where woodland regeneration is taking place and woodland cover is lower than the established thresholds, the *Ontario Forestry Act* (RSO 1990, F.26) definition of “woodlands” based on stem densities will prevail.

Other vegetation community types that may contribute to the biological diversity and ecological function of woodland features include Cultural Thickets (CUT), Swamp Thickets (SWT), Cultural Meadows (CUM), Tallgrass Prairies (TPO) and untreed wetland communities (e.g., MAM, MAS, SAF, OAO, FEO, and BOG) as defined by the ELC system. While these communities will not comprise a woodland feature in and of themselves, they may be captured in whole or in part as inclusions to the woodland feature and / or be captured as wetland features or SWH.

Woodland feature, Significant Woodland and Woodland boundary delineation shall be conducted by qualified professionals with expertise in ecology and / or forestry, and in some cases shall be informed by experts in hydrology and geomorphology. All woodland boundaries are to be delineated in the field at the dripline of the feature. Some additional multi-feature boundary delineation guidance is provided in **Section 4.8**, including some guidance applicable to delineation of woodland features and verification or refinement of Significant Woodlands and Woodlands.

Section 3.1 includes guidance related to the evaluation of Significant Woodlands.

4.4 Valleyland Feature and Significant Valleyland Delineation

The overarching policy framework for the identification of Valleyland features and Significant Valleylands is outlined in *The London Plan* – Policies 1347 to 1349, includes local criteria aligned with the *Natural Heritage Reference Manual* guidance, and also refers to these EMG for additional criteria. Relevant guidance from the applicable Conservation Authority policies and regulations shall also be considered.

The *Provincial Planning Statement* defines valleylands as “*a natural area that occurs in a valley or other landform depression that has water flowing through or standing for*

some period of the year" (e.g., rivers, streams, other watercourses and ravines) (MMAH, 2024). In addition to water conveyance, Significant Valleylands play an essential role in the NHS, such as providing various habitats and habitat connectivity (e.g., migration and dispersal corridors) (MNRF, 2010b).

Valleylands may be clearly defined (e.g., with steep ravines sloping down towards a permanent watercourse), or may not have a well-defined corridor or permanent flows (e.g., in areas of headwaters, seeps) (MNRF, 2010a).

Specific policies for the boundary (width) delineation of Valleylands and Significant Valleylands are outlined in *The London Plan* Policy 1350. Significant Valleyland boundary delineation shall be conducted by a qualified professionals with expertise in ecology, hydrology and geomorphology.

Section 3.5 includes guidance related to the evaluation of Significant Valleylands.

4.5 Significant Wildlife Habitat (SWH) Feature Delineation

The overarching policy framework for the identification, delineation, protection and determination of the significance of Significant Wildlife Habitat (SWH) is outlined in *The London Plan Policies 1352_ to 1355_*. These policies point to the guidance in the SWH Technical Guidelines (MNRF, 2000b), the *Natural Heritage Reference Manual* (MNRF, 2010b), the Province's criteria schedules for Ecoregion 7E (MNRF, 2015a) for determination of the significance and delineation of SWH, and the London-specific municipal criteria outlined in Policy 1354_.

SWH is the most complex habitat category in the City's NHS (and in the *Provincial Planning Statement*) as it seeks to capture ecologically important and somewhat specialized habitat types for a broad cross section of species and ecological functions. In Ecoregion 7E, the ecoregion in which London is situated, there are 35 categories of SWH. SWH often occurs as a subset of or within other NHS Features or Areas (such as wetlands or woodlands) but may also extend beyond or occur outside of such features or areas.

The applicable guidance, particularly for the ecoregional criteria, largely relies on vegetation community polygons delineated at the Ecosite level using the ELC system (Lee *et al.*, 1998) to determine the extent of habitat to be considered as SWH, although a few SWH categories are delineated using the presence or absence of other habitat features not linked to one or more specific Ecosite type. Nonetheless, the presence of one or more of the specified Ecosite types in conjunction with the presence of one or more of the defining criteria within the applicable polygons is sufficient to warrant consideration of a feature or area as candidate SWH. The current and proposed land use context should, however, also be considered in conjunction with the habitat needs and sensitivities of the species / group of species in question, and the broader context of the NHS on a City-wide scale, in determining appropriate boundaries for the SWH type.

It is the City of London's responsibility to determine whether or not the candidate SWH should be confirmed, the extent of the habitat to be protected, and the mitigative measures required, if any.

Depending on the nature and location of the SWH, boundaries may also be determined in consultation with the other applicable agencies (e.g., MNRF).

Further, delineation of SWH shall be informed by information collected from aerial mapping and observations from site investigations, and confirmed in the field by a qualified professional.

Section 3.4 provides guidance on the evaluation of SWH.

4.6 Environmentally Significant Areas (ESA) Delineation

The overarching policy framework for the evaluation of Environmentally Significant Areas (ESA) is outlined in *The London Plan* – Policies 1367_ to 1371_, and includes local criteria unique to London, as described in **Section 3.2**.

As outlined in *The London Plan*, ESA are relatively large areas in the City that contain clusters of NHS Features and / or Areas and perform ecological functions that warrant their retention in a natural state. ESA often capture a number of Natural Heritage Features and Areas that are clustered and / or overlapping including wetlands, woodlands, SWH, and / or valleylands and are delineated based on both the guidance provided in **Section 3.2.1** and **Section 4.8**, as well as the feature-specific boundary delineation guidance contained in other parts of **Section 4**.

ESAs that have been evaluated and designated are included as Green Space Place Type on Map 1 – Place Types and are mapped on Map 5 – Natural Heritage. However, Potential ESA (as identified through subwatershed plans or other environmental studies) have yet to have their delineation and significance (as outlined in **Section 3.2**) confirmed. It is important to note that mapping in *The London Plan* is dynamic in nature, and that not all potential ESA may be included in the mapping at a given time.

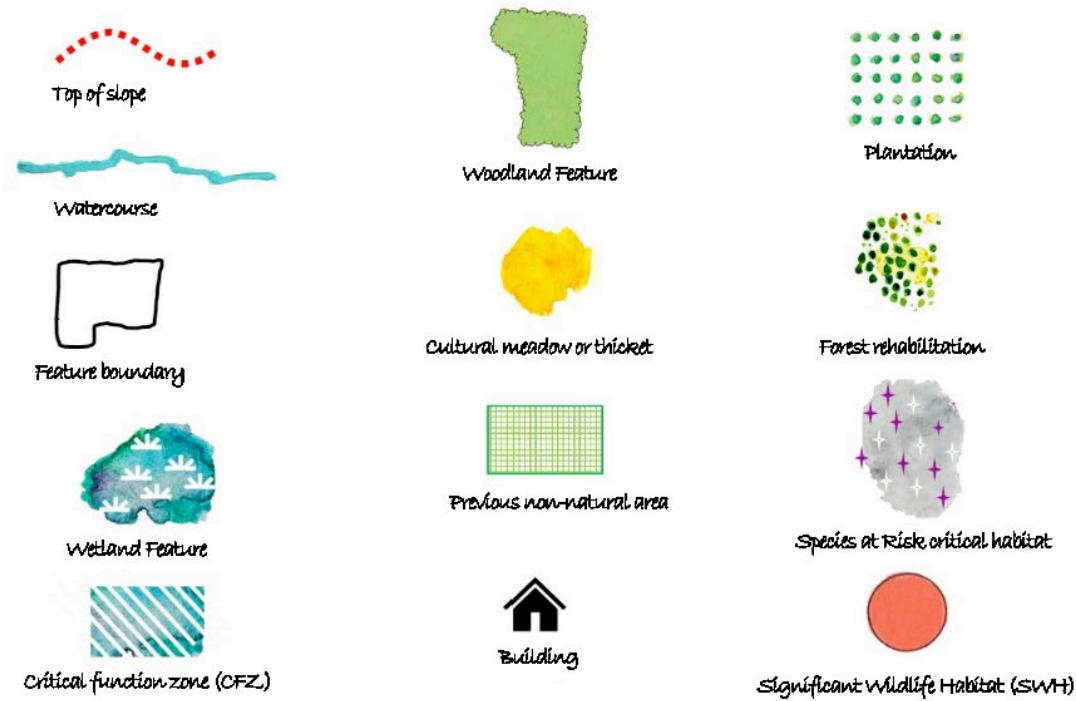
Appropriate expertise provided by a qualified professional is required to delineate ESA elements. The ELC system for southern Ontario (Lee et al., 1998) will be the standard protocol used to differentiate natural and cultural vegetation communities within Natural Heritage Features and Areas at the Community Series, Ecosite and/or Vegetation Type level or detail.

The term "areas" in the context of an ESA refers to the combined area of contiguous NHS Features and Areas, which are defined during boundary delineation and included in the ESA boundary. ESA typically include multiple NHS Features and Areas but may also consist of a single, large natural heritage feature containing a diversity of ELC community types. Ecological Buffers may or may not be included in the ESA delineation depending on the land use context.

NHS Features and / or Areas within an ESA should generally be contiguous but may be bisected by up to 40 m (e.g., by a utility corridor, road if the right-of-way (ROW), or another non-natural land use).

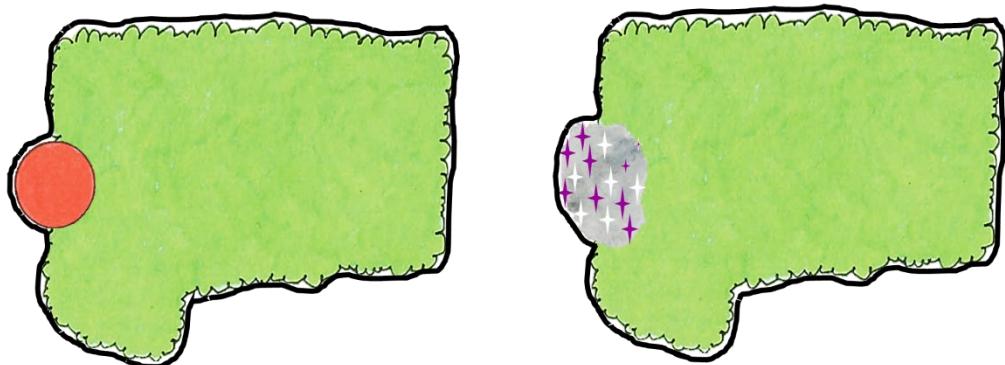
Section 3.2 includes guidance related to the evaluation of Potential ESA.

4.7 Unevaluated and Other Vegetation Patches


In general, Unevaluated Vegetation Patches have been identified through subwatershed plans or other environmental studies, and have been mapped in *The London Plan* on Map 1 – Place Types and Map 5 – Natural Heritage where the completed environmental study did not include an evaluation of these features.

Both Unevaluated Vegetation Patches (greater than 0.5 ha) and Other Vegetation Patches (greater than 0.5 ha) which have not been mapped in *The London Plan* on Map 1 – Place Types and Map 5 – Natural Heritage must be evaluated for significance and may become designated as an NHS component (e.g., Significant Woodland or Woodland) in whole or in part, in accordance with the guidance provided in **Section 3**.

It is important to note that mapping in *The London Plan* is dynamic in nature, and that not all Unevaluated Vegetation Patches greater than 0.5 ha may be included in the mapping at a given time. It is the responsibility of the proponent to identify and assess Other Vegetation Patches greater than 0.5 ha for evaluation as part of the planning process in accordance with the guidance in *The London Plan* and this document.


4.8 Boundary Delineation Guidelines

The following additional boundary delineation guidelines are largely intended for ESA and therefore should be read in conjunction with the guidance in **Section 3.2.2** and **Section 4.6** to in determining ESA boundaries. The following guidelines may also inform refinements to NHS boundaries, particularly where NHS Areas are being included (see **Figure 3.1**). Finally, Guideline 2 applies specifically to wetland features while Guideline 3 applies specifically to woodland features) and should be read in conjunction in conjunction with the guidance in **Section 4.2** and **Section 4.3** respectively.

Figure 4.1: Legend for boundary delineation guideline for Figures 4.2 through 4.9

GUIDELINE 1: All contiguous Species at Risk (SAR) habitat and Significant Wildlife Habitat (SWH) must be included within the ESA boundary and will also typically, once confirmed, also need to be included in the natural feature boundary.

Figure 4.2: Guideline 1 Illustration

Conditions:

Confirmed SAR habitat (including associated critical habitat zones) is to be included within the ESA and/or NHS boundary including habitat for Federal and Provincial SAR protected under the federal *Species at Risk Act* and provincial *Endangered Species Act*. For the City of London's policies related to SAR habitat, refer to *The London Plan – Policies 1325-1327*, as illustrated in **Figure 4.2**.

In addition to SAR habitat, all confirmed SWH is to be included as determined through ELC (Lee et al., 1998) and further assessed using the *Significant Wildlife Habitat Criteria Schedules for Ecoregion 7E* (MNRF, 2015a) and the *Significant Wildlife Habitat Technical Guide* (MNRF, 2000b) and, for the City of London's policies related to SWH, refer to *The London Plan – Policies 1352-1355*.

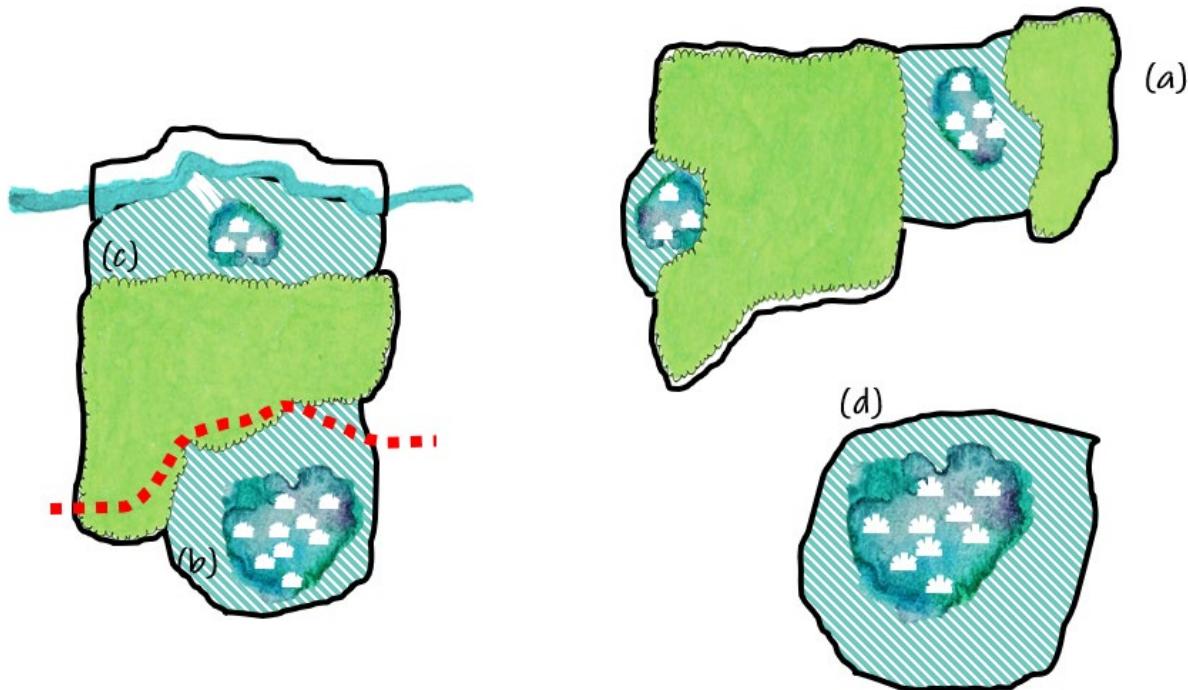
Rationale:

SAR habitat and SWH are essential for maintaining critical life processes, biodiversity, and aiding in the protection and recovery of rare species/communities and SAR (MNRF, 2010b). Further, underrepresented or rare species and communities (i.e., SAR, SWH) are under pressure from habitat fragmentation and overall loss of habitat, therefore one important goal for ecological function when establishing/defining an ESA and/or the NHS is to provide habitat to these rare species (MNRF, 2010b).

With regard to SAR habitat, a habitat zone is a feature or area used regularly for a key lifecycle requirement for a species or habitat that requires special protection. The vegetation in the habitat zone doesn't necessarily need to be of natural origins and could contain culturally influenced communities. The critical habitat of a plant species may extend to areas in the immediate vicinity of population that have similar soil, moisture, exposure, and community conditions.

Examples of habitat zones that may require special protection are:

Old fields, hedgerows, and woodland edges that may be important habitat for American badger (*Taxidea taxus jacksoni*) maternal and other den sites, as well as migration


corridors for the dispersal of young (Ontario American Badger Recovery Team, 2010); and,

Sandy shorelines that provide critical nesting habitat for the Eastern Spiny Soft-shell Turtle (*Apalone spinifera*) often occurring along the Thames River.

GUIDELINE 2: Swamps, marshes, thicket swamps, or other untreed wetland communities and their associated Critical Function Zones (CFZ) contiguous with the wetland feature must be included within the ESA and / or NHS boundary in accordance with the criteria provided (see inset (d) of Figure 4.3).

To be included in the ESA and / or NHS boundary, the wetland communities must meet at least one of the following criteria:

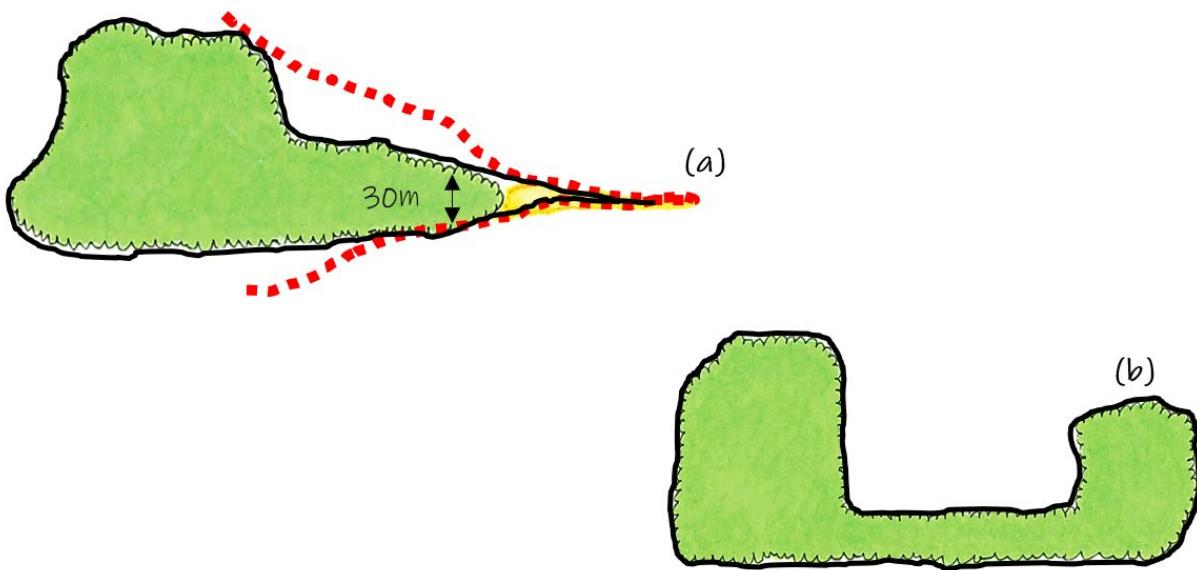
- a) The wetland strengthens a linkage between natural features by filling in a bay or connecting two or more natural features or is contiguous with another natural feature;
- b) The wetland is located above the top-of-slope of stream corridor or ravine;
- c) The wetland connects to a permanent, natural watercourse; or,
- d) The wetland CFZ is contiguous, in whole or in part, with the wetland feature.

Figure 4.3: Guideline 2 Illustration

Conditions:

Wetlands of all sizes are protected under the City of London's policies related to PSW, Wetlands, and Unevaluated Wetlands (***The London Plan*** – Policies 1330-1336). In addition, marshes, thicket swamps, and other untreed wetlands (along with their associated CFZs) that meet the criteria above must be included within the overall ESA boundary. All other wetlands, including PSW, Wetlands, and Unevaluated Wetlands and their associated CFZs that do not meet the above criteria are to be delineated as their own wetland feature.

CFZs include non-wetland areas within which biophysical functions or attributes directly related to the wetland occur (Environment Canada, 2013). Reference to Environment Canada (2013) can be made for more information on determining specific CFZs, however review of the most up-to-date documents on CFZs should be conducted.


Rationale:

Wetlands provide important habitat for plants, fish and wildlife. Wetlands also influence the quality and temperature of water flowing through them and some wetlands provide storage capacity to offset peak flows associated with storm events.

CFZs are natural areas that surround wetlands and can provide a suite of benefits to wetland function and to the species dependent on the wetland. In many cases, these natural areas, although they extend beyond the limits of the wetland, are inherently part of the wetland ecosystem and provide habitat for critical life processes to wetland species (Environment Canada, 2013).

GUIDELINE 3: Projections of naturalized vegetation less than thirty meters (30 m) wide that extend from the main body of the woodland feature (as illustrated in Figure 4.4):

- a) must be included within the boundary if the projection includes a wooded ravine or valley with untreed or successional habitat below the top-of-slope; and
- b) must be included within the boundary if the projection provides an ecological linkage within the landscape.

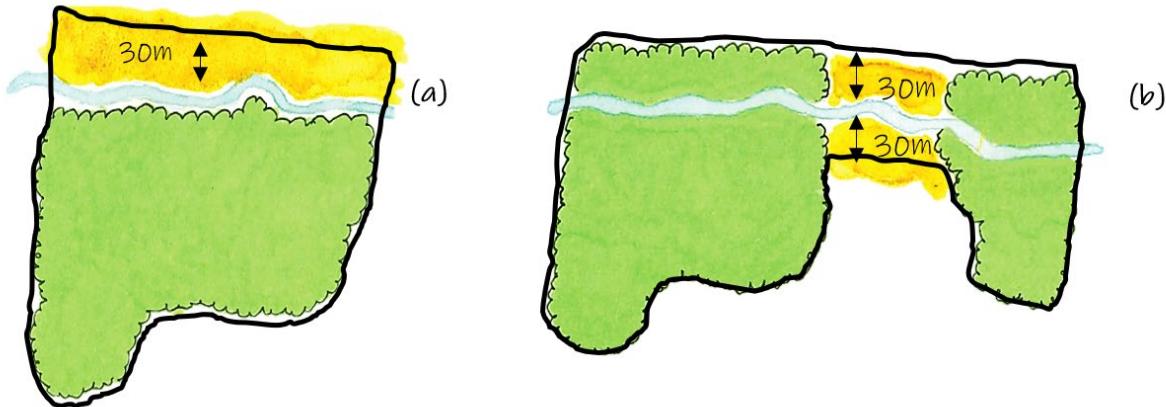


Figure 4.4: Guideline 3 Illustration

Rationale:

Ravine, valley, and upland corridors are important components of the NHS because they contain natural habitat, provide linkages, increase species richness and diversity, and facilitate movement and dispersion. Landscape connectivity (e.g., through linkages) is important in the maintenance of ecological function of natural features and reduces landscape fragmentation that lead to smaller, more isolated features (MNRF, 2010b). For example, linkages can provide a dispersal route for species (i.e., connectivity) to complete different aspects of their life cycles, such as allowing reptiles and amphibians to travel between breeding and overwintering habitat (MNRF, 2010b).

GUIDELINE 4: All watercourses abutting other features and areas being captured within an ESA must also be included within the NHS boundary.

Figure 4.5: Guideline 4 Illustration

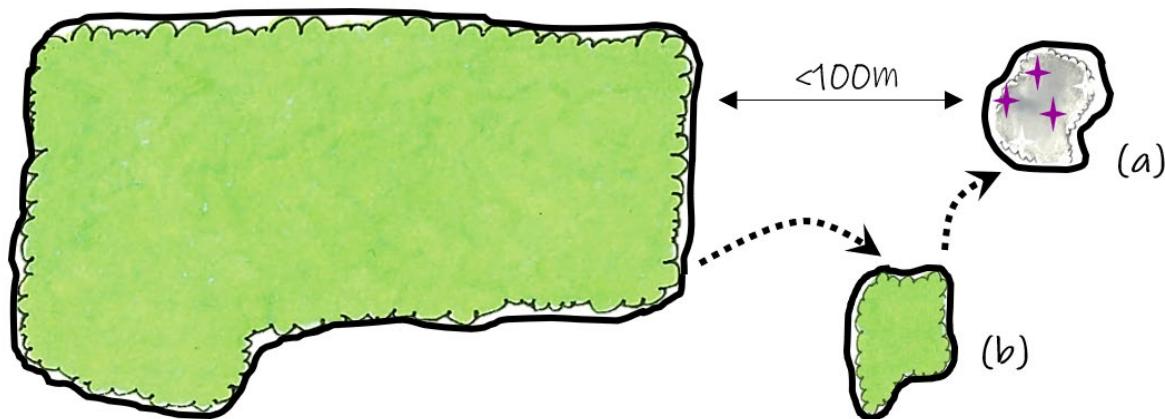
Figure 4.5 is an example of the inclusion of watercourses for defining ESA boundaries, where (a) depicts a watercourse at the edge of a woodland feature and (b) depicts a watercourse connecting two (2) woodland features separated by a cultural meadow.

Conditions:

The edges of the watercourse must be measured from the high-water mark and will include the following minimum corridor widths within the ESA:

- 15 m on each side of small watercourses (valleylands);
- 30 m on each side of watercourses within significant valleylands (*The London Plan – Policy 1350*);
- at least 30 m on each side of watercourses with a cold-water thermal regime streams; or,
- 100 m on the side(s) of large rivers (Thames River, Medway Creek, Stoney Creek, Dingman Creek) where the feature occurs (City of London, 2011).

The high-water mark is defined as the average highest level that a watercourse or waterbody rises to and remains at long enough to alter the riparian vegetation (DFO, 2007; DFO, 2019). In flowing watercourses, this is often referred to as the “active channel” or “bankfull level”, usually reflecting the 1:2 year flood level (DFO, 2007).


Rationale:

Watercourses act as important habitat providing wildlife resources and functions as well as contributing substantially to connectivity within and between significant natural areas. Riparian areas adjacent to watercourses are important for protecting the water quality and ecological health of aquatic habitats. First order, headwater streams are recognized as indicators of hydrological processes. These hydrologic processes are important for ecological function and should be protected within the NHS (MNRF, 2010b).

A watercourse is generally defined according to several federal and provincial acts and regulations and typically consists of a distinct (somewhat to well-defined) channel in which water naturally flows at some time of the year [i.e., permanent, intermittent, or ephemeral flow as defined by MNRF's Stream Permanency Handbook for South-Central Ontario (MNRF, 2013)]. This includes anthropogenically created / maintained / altered features as well as natural features.

GUIDELINE 5: Satellite woodlands that are less than 2 ha and are located within 100 m of another woodland feature:

- a) must be included within the ESA and/or NHS boundary if the satellite woodland contains confirmed Species at Risk (SAR) or Significant Wildlife Habitat; and,
- b) must be included within the ESA and/or NHS boundary if they contribute to biological diversity and ecological function of the other woodland feature and / or act as stepping stone linkages within the greater landscape,

Figure 4.6: Guideline 5 Illustration

Conditions:

Contributions to biological diversity, ecological function, and / or connectivity (illustrated in **Figure 4.6**) may include, but is not limited to the following (MNRF, 2010b):

- the satellite supports native tree cover;
- the satellite is located adjacent to or contains a wetland;
- the satellite is located between two (2) larger woodland features that are within 250 metres of each other, where the land between the woodland features is absent of permanent barrier;
- the satellite meets the habitat needs of one or more species that are not met by the larger woodland feature;

- the satellite contains a natural vegetation community type that is not already represented in the larger woodland feature;
- the satellite supports or is dependent upon a surface- or ground-water connection that maintains fish or aquatic habitat in either woodland feature; and,
- the satellite provides a temporary refuge that facilitates movement between habitats.

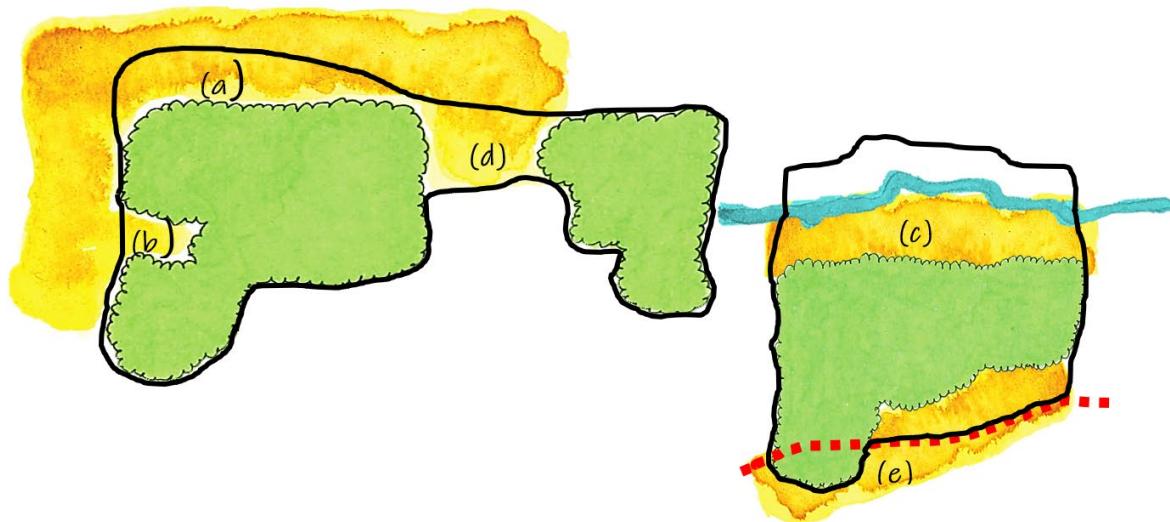
Rationale:

There is limited evidence to support the principle that large contiguous natural features contain more biodiversity than multiple small natural features of the same total area (Fahrig, 2019).

It is also known that woodland features greater than 4 ha are important in Middlesex County and have the potential to support habitat for disturbance sensitive species (UTRCA, 2014; MNRF, 2010b).

However, smaller woodland features have the potential to deliver multiple ecological services at higher performance levels per unit area than larger woodlands in agricultural landscapes (Valdés et al., 2020) and multiple small, connected natural features can support higher species richness, are more likely to contain wide-ranging taxa (e.g. predators), and may have fewer extinctions compared to single large natural features (Hammill and Clements, 2020).

The presence of native conifer cover is also considered important for providing wildlife shelter. Further, the importance of a woodland increases if it is located adjacent to a wetland or it contains a wetland, as wetlands can increase vegetation diversity, provide important wildlife habitat features, and contribute to hydrological functions (Hilditch, 1993; Riley and Mohr, 1994).


Small woodlands that are in close proximity to one another or interspersed amongst larger natural heritage feature clusters, may have value for area-sensitive birds and species with low mobility (Riley and Mohr, 1994). Further, small woodlands located between Natural Heritage Features and Areas can act as stepping stones for movement of species, thus functioning as a linkage (MNRF, 2010b).

Furthermore, feature clusters that collectively meet several of the habitat needs of one or more species are generally more valuable than feature clusters that meet fewer habitat needs (MNRF, 2010b). Natural areas that consist of several feature types containing a diversity of native vegetation community types can sometimes provide better representation of the range of habitats than a single larger feature type (MNRF, 2010b; Fahrig, 2020).

GUIDELINE 6: Cultural meadows must be included in an ESA if they meet one (1) of the following criteria (as illustrated in Figure 4.7):

- a) a portion of meadow habitat surrounds a feature on one or more sides, and provides improved ecological function to the established NHS Feature by its inclusion;
- b) strengthen internal linkages between NHS Features by filling in "bays";
- c) connect one of more NHS Features to a watercourse; or
- d) connect two or more NHS Features to each other (inset d of Figure 4.7); or,
- e) are below the top-of-stable-slope in a stream corridor or ravine.

Note: The ability of cultural meadows to provide connectivity between NHS Features depends on the landscape context but should be considered where the gaps between features are less than 40 m.

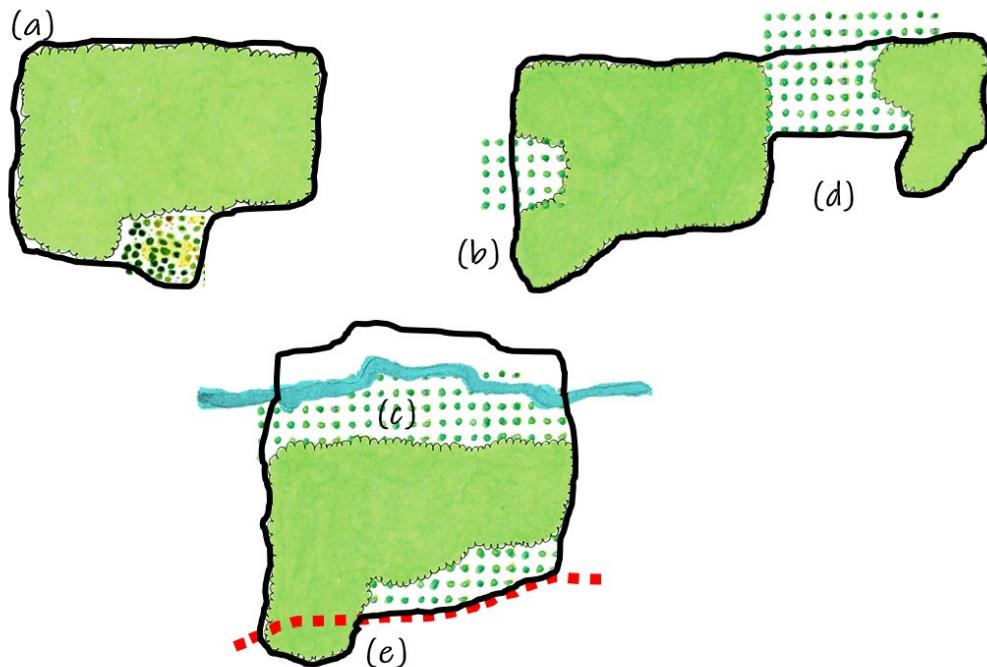
Figure 4.7: Guideline 6 Illustration

Condition:

A cultural meadows meeting any one of the above conditions is to be included (at least in part) in the ESA boundary, and should enhance the ESA but not occupy a large proportion of the total area of the ESA being delineated.

Rationale:

Cultural meadows may act as significant supporting habitat to NHS Features, where the loss of such communities would result in loss of ecological integrity of the entire NHS boundary. The inclusion of cultural meadows may increase the biological diversity of the area if the other similar cultural meadows are not already present.


Cultural meadows may provide increased community and species diversity, important breeding and foraging wildlife habitat, landscape connections between naturalized

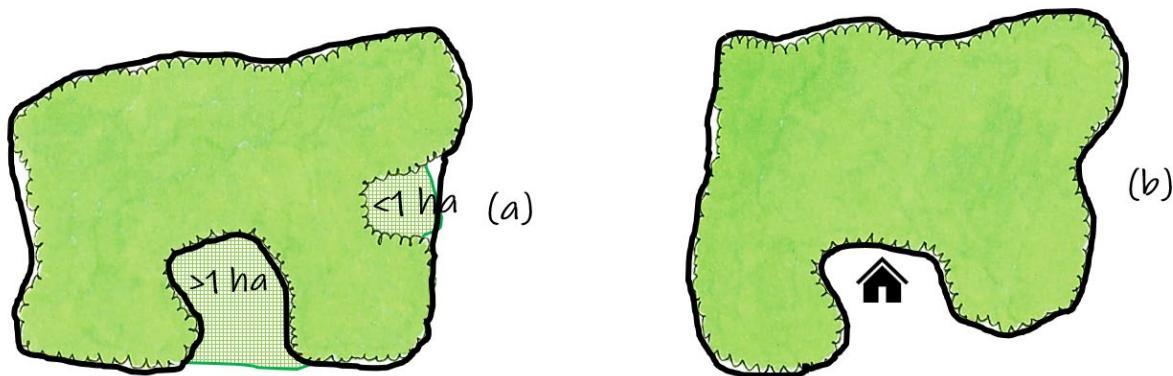
areas, habitat for rare flora and fauna, and / or reduce negative effects from surrounding land-use. Cultural meadow adjacent to woodlands also has potential for rehabilitation and may contribute to a net environmental benefit in ecosystem health. Although cultural meadows are not pristine or unaffected by human activity, they have the potential to contribute natural values. This contribution is especially prevalent in agriculturally dominated landscapes, which are common southern Ontario (Geomatics International, 1995; Milne and Bennet, 2007).

Criteria and guidelines for evaluating the ecological significance of cultural meadows are provided in the Geomatics (1995) report "Management options for old-field sites in southern Ontario". These criteria address a range of issues including rare and endangered species, wildlife habitat, site productivity, successional stage, soil characteristics, site history and the relationship of a particular site to the surrounding landscape.

GUIDELINE 7: Established or regenerating plantations that also qualify as woodland features and are contiguous with one or more other natural feature(s) must be included in the ESA and/or NHS boundary if they meet one (1) of the following criteria (as illustrated in Figure 4.8):

- a) was originally established for the purposes of forest rehabilitation or has been managed towards a natural forest or is developing/has developed characteristics of a natural forest, such as natural regeneration of native species;
- b) strengthens internal linkages or reduces edge to area ratios by filling in bays;
- c) connects a woodland feature to a permanent watercourse;
- d) connects two or more woodland and/ or wetland feature; or,
- e) is below the top-of-slope in a stream corridor or ravine.

Figure 4.8: Guideline 7 Illustration


Example of the inclusion of plantations for defining feature boundaries where a) depicts a plantation providing protection for adverse effects, b) depicts a plantation filling in a 'bay', c) depicts a plantation connecting a woodland feature to a watercourse, d) depicts a plantation connecting two (2) natural heritage features, and e) depicts a plantation below the top-of-slope of a stream corridor/ravine.

Rationale:

Cultural plantation communities may provide significant wildlife or supporting habitat for important wildlife processes (e.g., butterfly stopover areas, raptor nesting areas, etc.; MNRF, 2015a). Plantations form connections between naturalized areas, provide wildlife habitat, stabilize soils, and have the potential for regeneration to natural habitats.

GUIDELINE 8: Existing land uses within or adjacent to a confirmed NHS Feature may be included in an ESA and/or NHS boundary subject to the following considerations (as illustrated in Figure 4.9):

- a) Existing heavily managed or manicured areas that are surrounded on at least three sides by a NHS Feature are included in the ESA feature boundary if they are less than one hectare (1 ha) in total area (**Figure 4.9**). Such features include, but are not limited to agricultural croplands, active pasture, golf courses, lawns, ornamental treed lots, gardens, nurseries, orchards, and Christmas tree plantations. Subsequent abandonment or potential for rehabilitation of patches larger than one hectare (1 ha) may qualify such areas for inclusion in the ESA; or
- b) Existing residential building envelopes and institutional building envelopes surrounded on at least three sides by a NHS Feature are not included in the ESA. Building envelopes and access routes of existing structures must be determined on a site-specific basis.

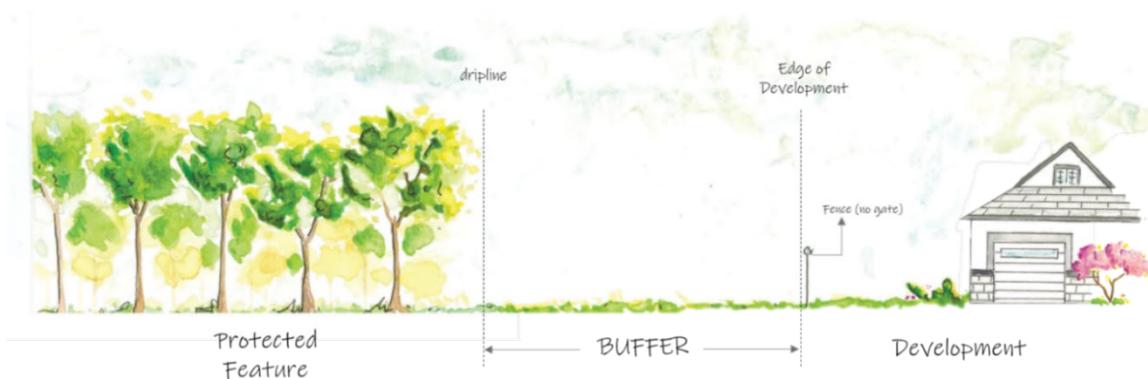
Figure 4.9: Guideline 8 Illustration

Rationale:

Existing heavily managed or manicured features (e.g., croplands, pastures, orchards, etc.) can provide a large number of ecological and environmental services. These services include providing wildlife habitat, carbon sequestration and climate change mitigation, protection from erosion, stormwater catchment, and protection from disturbance (Troy and Bagstad, 2009; FAO, 2013).

5. Determining Ecological Buffers

Ecological Buffers are one of the primary planning tools that must be implemented to help ensure the protection of natural heritage features and their functions in accordance with *The London Plan* (see Environmental Policies 1412 to 1416). The following section provides guidance for: i) the determination of suitable site-specific Ecological Buffer widths and ii) the implementation and management of site-specific Ecological Buffer restoration and / or enhancement treatments.


This section defines an Ecological Buffer (**Section 5.1**), outlines the approach to be taken in the City related to Ecological Buffers (**Section 5.2**), and describes the process to be followed for Ecological Buffer determination (**Section 5.3**) that must be followed in order for an EIS to be accepted by the City of London.

This process is best applied by professional Ecologists who have experience with, and an understanding of, the many interrelationships of the various natural heritage features and areas, and their ecological functions, that may be present and that are potentially affected by a development proposal.

5.1 Definition and Purpose of an Ecological Buffer

Ecological Buffers are strips of land kept in a vegetated state that provide a physical separation between development and a protected natural heritage feature (MNRF, 2010b). The width of an Ecological Buffer is to be determined based on the type of natural heritage feature and its functions as well as the potential impacts resulting from the proposed adjacent development. Ecological Buffers originate at the boundary of a natural heritage feature and extend outwards to the limits of development (MNRF, 2010b; Carolinian Canada, 2000). In the case of wetlands, as described in **Section 4**, Critical Function Zones (CFZs) must be considered in the overall feature boundary. Therefore, for wetlands, ideally the Ecological Buffer is to originate at the external boundary of the CFZ (i.e., where the CFZ is contiguous with the wetland feature).

Ecological Buffers shall not be included within the limits of development, or within the boundary of the feature. Ecological Buffers are not intended to contribute to feature-based compensation goals, should they be required. Ecological Buffers should not be treated as extensions of the natural feature to allow for management practices should they be required (MNRF, 2010a).

Figure 5.1: Illustration of an Ecological Buffer implemented for the protection of a Natural Heritage System Feature adjacent to a development

Note that a setback is different from an Ecological Buffer, although in some cases the natural feature Ecological Buffer and setback may overlap in whole or in part. A natural feature setback is intended to account for physical constraints based on geotechnical assessments, identified hazards (Carolinian Canada, 2000), or other physical constraints such as those related to flooding. For example, a property must be setback a certain distance from the stable top of slope for safety purposes and property protection. In cases where both physical setbacks and Ecological Buffers are required, the greater of the two will establish the development limit line.

Adjacent lands are also not synonymous with buffers, although buffers are often contained within the adjacent lands to natural heritage features and areas. As stated in the *Natural Heritage Reference Manual* (MNRF, 2010b), “*In contrast to adjacent lands, which are usually established before development is proposed (e.g., through official plan and or zoning by-law provisions), identified buffers should be determined once the nature of the development is known and the extent of potential impacts can be determined*”.

5.2 Approach

The process of determining a site-specific Ecological Buffer width requires the consideration of information about the sensitivities and functions of the natural heritage feature and area(s) being considered and the nature and scope of the proposed adjacent land uses. The science of Ecological Buffer efficacy is ever evolving. Since the science is constantly changing, the process outlined below is intended to allow for flexibility and the inclusion of new scientific information as it becomes available.

In general, the precautionary principle is to be used when it comes to the protection of features, functions, and species given that impacts may be documented decades after a development has been completed and *in situ* Ecological Buffer efficacy is not yet well studied. However, in certain cases, the City and the Proponent, in consultation with any other applicable agencies, may agree to an Ecological Buffer width less than that which is required as determined through the process outlined in **Section 5.3**.

Other techniques, including those outlined in *The London Plan* Policy 1415_, may be required in addition to the application of Ecological Buffers to limit the impacts anticipated with proposed development.

At the City's discretion, in consultation with any other applicable agencies, pathways or trails may be permitted within the Ecological Buffer in accordance with the guidance in **Section 5.4** and is supported by the recommendations of the approved EIS.

This approach is based on policies and guidance provided in *The London Plan* and the provincial *Natural Heritage Reference Manual* (MNRF, 2010b), with consideration for the policies of the Oak Ridges Moraine Conservation Plan (MMAH, 2017b) and Greenbelt Plan (MMAH, 2017a).

5.3 Ecological Buffer Determination Process

Table 5-1 below outlines the general step-by-step process to determine a site-specific Ecological Buffer width for the protection of Natural Heritage Feature(s) within the City of London. Although ultimate Ecological Buffer widths can only be confirmed at the site-specific EIS stage, where possible, preliminary Ecological Buffers should be identified at the broader Subwatershed Study or Secondary Plan stage to provide an early and realistic determination of lands that may be suitable for development and so that opportunities for mitigation using Ecological Buffers is available during the design of draft plans (MNRF, 2010b).

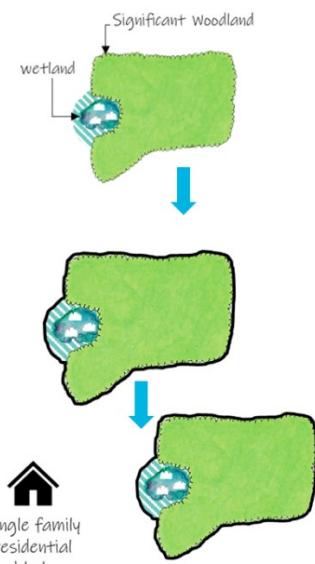
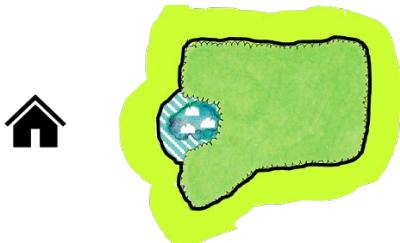
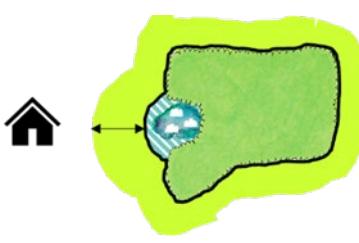
The following process has been developed primarily for application at the site-specific stage through an EIS, but many of the same steps and considerations could be applied at the broader Subwatershed Study or Secondary Plan stage with the understanding that refinements would need to be considered in the context of the EIS once the details of the proposed development are known.

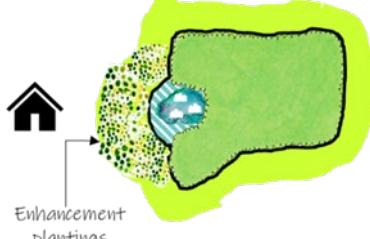
5.3.1 Step 1 – Determine feature to be protected, delineate boundaries and determine potential impacts

5.3.1.1 What is being protected and what are their boundaries?

Gaining an understanding of the protected natural heritage feature(s) and their ecological function(s) is the first step in the overall process of determining a site-specific Ecological Buffer width. It is the responsibility of the professional undertaking the Ecological Buffer width determination to complete a comprehensive background review and the appropriate field studies (in accordance with the guidance in **Section 2.5** for SLSR and EIS) such that the various habitats, and the species that occupy those habitats, are well understood.

It should be noted that multi-disciplinary investigations may be required to understand the features, their functions and the interactions with different components of the environment. These may include, but are not limited to, ecological surveys (vegetation surveys, wetland evaluations, breeding bird surveys, amphibian call surveys, reptile surveys, bat habitat surveys, SWH surveys, etc.), hydrological studies, hydrogeological studies, geotechnical investigations, etc.




Direction related to boundary delineation and evaluation of the natural heritage features and areas that are part of the City's NHS is provided in *The London Plan* Environmental Policies and the supporting guidance as described in **Sections 3** and **4** of these EMG.


5.3.1.2 What are the potential development-derived Impacts?

Understanding the proposed development and the elements that may affect a natural heritage feature and its ecological function(s) is the responsibility of the professional undertaking the Ecological Buffer determination process. Ecological Buffer width(s) should be based on the functions and sensitivities of the feature(s) and the type(s) and scope of development adjacent to a natural heritage feature and the potential development-derived effects that can reasonably be anticipated. For example, studies have demonstrated significant impacts to forests with adjacent residential development including those associated with off-trail use leading to compaction and erosion of soils, changes to hydrological regimes, loss and damage to vegetation, reductions in the regeneration success of trees and the spread of exotic plants and animals (McWilliams et al., 2012).

When determining the potential effects of a proposed development, refer to **Section 2**.

Table 5.1: Site-specific Ecological Buffer width determination process

Step	Description	Diagram
Step 1: Determine the feature to be protected, delineate feature boundaries and determine the potential impacts	<p>a. Collect the necessary information from the EIS and other associated studies to gain an understanding of the natural heritage feature(s) and function(s) that are to be protected, b. delineate feature(s) boundaries, and c. determine the potential impacts of the proposed site alteration or development (see Appendix E).</p> <p>Example:</p> <p>Studies determined the presence of a Significant Woodland with corresponding wetland (including Critical Function Zone) per Section 2 and Section 3 of these guidelines.</p> <p>Boundaries defined per Section 4.</p> <p>Proposed development is a single detached residential subdivision consisting of twenty lots located on the west side of the confirmed NHS features.</p>	
Step 2: Apply the minimum Ecological Buffer widths	<p>Apply the minimum widths for the type(s) of natural heritage features that are being protected. Identified minimum Ecological Buffer widths are to start at the delineated boundary of the natural heritage feature.</p> <p>Minimum Ecological Buffer widths applied per Table 5.2.</p>	
Step 3: Determination of Site-specific Ecological Buffer widths	<p>Determine if a greater than minimum Ecological Buffer width is required for the protection of the identified natural heritage feature(s) and functions. Greater than minimum Ecological Buffer widths are to start at the same point as Step 2, the delineated boundary of the natural heritage feature(s).</p> <p>Wetland found to support Species at Risk habitat, Ecological Buffer width increased in the wetland area per Table 5.3.</p>	

Step	Description	Diagram
Step 4: Ecological Buffer enhancement	<p>Site-specific enhancement within the Ecological Buffer area; the objective being to enhance the functioning of the Ecological Buffer and to minimize overall potential negative effects to the protected feature(s) and functions.</p> <p>Enhancement plantings per Section 5.4 applied in area of natural heritage feature that is most sensitive.</p>	

5.3.2 Step 2 – Apply Minimum Ecological Buffer Widths

The ultimate width of the Ecological Buffer will depend on the local conditions and sensitivities of the protected feature, the anticipated impacts associated with the change in adjacent land use, and the impacts that a Ecological Buffer can, and cannot, reasonably be expected to mitigate (Beacon, 2012). As determined through a review of current policies and literature, **Table 5.2** outlines the required minimum Ecological Buffer widths that are considered necessary to maintain the natural, physical and chemical characteristics of natural heritage features (MNRF, 2010b). Depending on the sensitivities of the natural heritage feature(s) being considered and the type of development, these required minimum widths may not provide sufficient protection. Therefore, additional Ecological Buffer width may be necessary to maintain the various biological components of natural heritage features (MNRF, 2010b), as outlined in **Section 5.3.3**.

Minimum Ecological Buffers for the habitat of SAR, as well as SWH will vary on a case-by-case basis as the minimum width will depend on a range of factors including the species identified and their lifecycle processes. Ecological Buffers should be determined on a case-by-case basis with consideration for the applicable provincial guidance and, in the case of Endangered and Threatened Species, potentially in consultation with experts and/or the Province.

Table 5.2: Required minimum Ecological Buffer widths¹ for protected Natural Heritage System components

Natural Heritage Component	Required Minimum Width ²
Coldwater and Cool-water Fish Habitat	30 metres ³
Warm-water Fish Habitat	15 metres ³
Provincially Significant Wetlands (PSW)	30 metres
Wetlands (non-PSW)	30 metres
Significant Woodlands	20 metres ⁴
Woodlands	10 metres ⁴
Significant Valleylands and Valleylands	Required minimum for the component of the NHS
Environmentally Significant Areas (ESA)	Required minimum for the component of the NHS
Upland Corridors and Meadows	5 metres

¹ The relevant science and applied technical literature used to support the identified minimums are cited throughout **Section 5**.

² Ecological Buffers are to be measured from the feature boundary, as outlined in **Section 4**.

³ Ecological Buffers are required on both sides of the watercourse measured from the high water mark.

⁴The City may accept an Ecological Buffer less than the required minimums for Wetlands less than 0.5 ha, Significant Woodlands less than 2 ha, and Woodlands where it is supported through an Environmental Impact Study that is accepted by the City in consultation with the other applicable agencies where appropriate.

Why do “Woodlands” have smaller minimum Ecological Buffers than “Significant Woodlands” in the City of London?

The City of London is unique from most other municipalities in that in addition to having policies that protect all natural wooded areas considered significant from a natural heritage perspective, it also has policies to support the protection and integration of other wooded areas recognizing the contributions such features can make in helping the City build resilience to climate change.

- Significant Woodlands are identified using a comprehensive suite of criteria focused on their ecological and natural heritage functions and are protected in

accordance with the policies *The London Plan* as described in Policy 1341_ and **Section 3.1** of these EMG.

- “Woodlands”, as per *The London Plan* are described as:
 - “*Smaller woodlands [that] may not meet the test for significance, but may be retained for their aesthetics and as a recreational amenity are highly connected to more dense portions of as part of a park*” (Policy 418_).
 - “*Woodlands that are not determined to be ecologically significant but are to be retained for public open space or park purposes, or woodlands to be retained at the property owner’s request as a private woodland*” (Policy 1343_).

These Woodland policies are intended to support the protection of wooded areas that are not considered significant from a natural heritage perspective but still provide environmental and social value to the community, and therefore are protected as opportunities arise through the planning process. As a consequence of this unique approach, Woodlands do not warrant the same level of protection with Ecological Buffers as Significant Woodlands.

5.3.3 Step 3 – Determination of site-specific Ecological Buffer widths

Minimum Ecological Buffers as outlined in **Section 5.3.2** should generally be sufficient for the protection of identified natural heritage features and their associated functions. However, an EIS may recommend an Ecological Buffer width less than the minimum in accordance with **Table 5.2** or greater than the minimums in **Table 5.2** based on the size of the feature, the sensitivity of the feature and the nature of the proposed adjacent development.

The Ecological Buffers required for NHS components do not supersede or in any way supplant the need for other applicable setbacks related to natural hazards in accordance with the applicable provincial and Conservation Authority policies and regulations. In cases where buffers and natural hazard setbacks overlap, the more restrictive requirement shall apply to inform the development limit.

Some key site factors drawn from the current and applicable literature that should be considered in relation to potential increases from the required minimums are provided below, with some supplemental criteria and sources provided for consideration in **Table 5.3**.

- Site-specific drainage patterns and flows, with sheet flows towards a feature more readily intercepted / slowed by a vegetated Ecological Buffer than channelled flows (e.g., Castelle and Johnson, 2000; Sheldon et al., 2005 as cited in Beacon, 2012), with this factor being closely related to slope and soil type;
- Slope, with vegetated Ecological Buffer effectiveness generally being reduced with increasing slope, particularly in excess of 15% (e.g., Schueler, 1987; Norman, 1998 as cited in Beacon, 2012); and
- Soil type and related infiltration capacity, with soils with better drainage and more organic matter providing more effective infiltration.

Other factors that can help improve Ecological Buffer effectiveness and mitigate the need for potential increases from the required minimum widths are provided below.

- Vegetative composition of Ecological Buffers: well-vegetated Ecological Buffers that mimic the composition of the feature being protected (Beacon, 2012); and,
- The presence of design features: associated with Ecological Buffers such as a continuous ungated fence at rear lot lines backing onto Ecological Buffers, formal trails between the feature edge and the development limit (may be within or outside the Ecological Buffers), and the presence of stormwater management measures (such as bioswales and berms) – that can prevent encroachments into the protected feature (e.g., McWilliam et al., 2011 as cited in Beacon, 2012; Beacon, 2014).

As the impacts of adjacent development become better understood and more research is conducted on the ecology of various features, Ecological Buffer requirements may change. Therefore, current literature may also be consulted to review the impacts relevant to the feature under consideration (MNRF, 2010b). Ideal sources include studies designed to determine the impacts of an anthropogenic activity on biological systems, and comprehensive reviews or meta-analyses related to natural resource management. Such studies can be located in peer-reviewed academic journals, statements and reports from reputable experts and / or expert bodies, standard textbooks or handbooks and reference guides. City of London Ecologists may also recommend appropriate sources.

Table 5.3: Criteria for the determination of variation from required minimum Ecological Buffer widths

Criteria	Rationale	Literature
Specialized Features and Functions		
Presence of Significant Wildlife Habitat	Greater than minimum Ecological Buffer widths may be required when Significant Wildlife Habitat in accordance with criteria schedules for Ecoregion 7E are present (MNRF, 2015a).	MNRF, 2015a; Environment Canada, 2013; MNRF, 2010b

The presence of Significant Wildlife Habitat (SWH) indicates specific conditions that are enabling that type of habitat to be present and therefore, a higher degree of protection may be required. Consultation with the City of London is required.

Buffers for the protection of SWH should be based on evidence and include reference to:

- Significant Wildlife Habitat Criteria Schedules for Ecoregion 7E (MNRF, 2015a)
- COSEWIC Reports where applicable
- COSSARO Reports where applicable
- Environment Canada's *How much Habitat is Enough?* (Environment Canada, 2013)
- Significant Wildlife Habitat Mitigation Support Tool (MNRF, 2014)

Criteria	Rationale	Literature
<ul style="list-style-type: none"> Academic journal articles, where available 		
Presence of Species at Risk (SAR)	Greater than minimum Ecological Buffer widths may be required when species considered Endangered or Threatened per the <i>Endangered Species Act</i> are present.	Environment Canada, 2013; various COSEWIC and COSSARO reports; MNRF, 2010b
<p>The presence of an Endangered or Threatened species indicates specific conditions that are enabling that species to survive and therefore, a higher degree of protection may be required. If it is determined that a SAR is expected to be negatively affected by a proposed development, consultation with the Province may be required. Such consultations may identify the need for a permit and/or other requirements to comply with the <i>Endangered Species Act</i>. In the case of any SAR, consultation with the City of London may also be beneficial to explore appropriate protection, mitigation and/or management measures .</p> <p>Ecological Buffers for the protection of Endangered and Threatened species must be based on evidence and include reference to:</p> <ul style="list-style-type: none"> Ontario government's SAR database, including any species-specific government response statements, recovery strategies and / or habitat protection regulations Species-specific assessment reports <ul style="list-style-type: none"> Committee on the Status of Endangered Wildlife in Canada (COSEWIC) Reports Committee on the Status of Species at Risk in Ontario (COSSARO) Reports Environment Canada's "How much Habitat is Enough?" (Environment Canada, 2013 or successor document) Various independent academic journal articles related to the SAR in question <p>Note that any habitat location information for Endangered and Threatened species is sensitive information and should not be identified in public documents, including mapping (MNRF, 2010b).</p>		
Slope		
Slope/Overland Flow	Greater than minimum Ecological Buffer widths should be considered where the overall feature slope is greater than 5%, particularly when the slope is towards a protected wetland or watercourse.	Adamus, 2007; Beacon, 2012; Mitchell and Crook, 1996

Criteria	Rationale	Literature								
<p>Understanding the slope and direction of flow aids in predicting areas that may receive more water than others, help determine appropriate Ecological Buffer plantings, as well as pre-construction conditions that need to remain the same post-construction. (Slope may be measured using a geo-referencing tool or handheld clinometer or desktop analyses using current topographical information).</p> <p>The following are recommended Ecological Buffer widths starting at the edge of a natural heritage feature where slope is:</p> <table> <tr> <td>5-15%</td> <td>30 m Ecological Buffer</td> </tr> <tr> <td>16-30%</td> <td>50 m Ecological Buffer</td> </tr> <tr> <td>31-45%</td> <td>70 m Ecological Buffer</td> </tr> <tr> <td>>45%</td> <td>90 m Ecological Buffer</td> </tr> </table>			5-15%	30 m Ecological Buffer	16-30%	50 m Ecological Buffer	31-45%	70 m Ecological Buffer	>45%	90 m Ecological Buffer
5-15%	30 m Ecological Buffer									
16-30%	50 m Ecological Buffer									
31-45%	70 m Ecological Buffer									
>45%	90 m Ecological Buffer									
<h3>Development Conditions</h3>										
Development Type	Greater than minimum Ecological Buffer widths may be required as addressed and identified by the EIS based on specific development conditions (e.g., stressors).	McWilliam et al., 2012; Sawatzky and Fahrig, 2019; Environment Canada, 2013								
<p>Encroachment into natural features is a common impact associated with residential development. Ecological Buffers provide some area for minor encroachment without affecting actual features (MNRF, 2010a). Stressors such as human disturbance (e.g., landscaping, dumping, urban wildlife, noise) shall be considered when establishing Ecological Buffer width.</p>										

5.3.4 Step 4 – Ecological Buffer Restoration and Enhancement

Once a site-specific Ecological Buffer width is determined following Steps 1 through 3 as outlined in **Sections 5.3.1, 5.3.2 and 5.3.3**, the required Ecological Buffer restoration and enhancement measures can be recommended based on the characteristics of the site and the adjacent natural heritage feature(s).

5.3.4.1 Ecological Buffer Enhancement Strategy

In most cases, the land set aside for the site-specific Ecological Buffers will be comprised of farmed agricultural lands, mown grass or abandoned land with ruderal vegetation. In some redevelopment scenarios it may be open gravel or paved. It is the responsibility of the professional undertaking the Ecological Buffer determination process to document and understand the edge conditions of an identified natural heritage feature, including what is present within the adjacent lands so that appropriate enhancement strategies can be developed and implemented.

The intent of the strategy should be to reduce edge effects, improve Ecological Buffer functions (e.g., through restoration or enhancement of site-appropriate native

vegetation), and enhance habitat connectivity to build the resilience of the natural heritage feature(s) being protected.

When determining a Ecological Buffer enhancement strategy, the following should be considered:

- Allocate a greater proportion of Ecological Buffer enhancements in areas that reduce the total edge: area ratio of the feature (i.e., bays and projections);
- Allocate a greater proportion of Ecological Buffer enhancements to areas which minimize climatic, structural or anticipated impact gradients (e.g., consider the orientation of the patch to flows in the landscape such as prevailing winds and sources of disturbance and encroachment such as urban cats, wind-dispersed seeds, noise, light and chemical pollution); and
- Allocate a greater proportion of Ecological Buffer enhancements proximal to areas that contain sensitive feature(s) and functions.

Table 5.4 outlines Ecological Buffer enhancement measures that shall be implemented to reduce of negative edge effects, protect features and their ecological functions, and improve habitat quality.

Table 5.4: Potential Ecological Buffer enhancement measures

Ecological Buffer Enhancement Measure
<p>Native Plantings</p> <p>Plantings of native tree, shrub, seed mixes and individual herbaceous species within a site-specific Ecological Buffer width increases the structural gradient and reduces exposure to light, moisture and wind conditions. Natural heritage features with a dense multi-layered edge structure are more likely to maintain interior conditions after experiencing anthropogenic disturbance (Fry and Sarlöv-Herlin, 1997; Powney et al., 2012). Further, the physical separation of development from a natural feature reduces the penetration of light and noise into the natural feature. This will be further reduced if the Ecological Buffer supports dense vegetation (MNRF, 2010b).</p> <p>Increasing the structural gradient means having vegetation at various heights in various areas. This is especially important for treed natural heritage features with simple, open edges as well as features that are smaller in size with low connectivity. A multi-layered approach with respect to native plantings increases habitat suitability for resident species as well as landscape connectivity (Fry and Sarlöv-Herlin, 1997).</p> <p>Vegetated Ecological Buffers slow down surface runoff and absorb nutrients and chemicals used for lawn care, agriculture and road maintenance, thus reducing impacts on natural features. If runoff is not controlled, impacts can include soil erosion/sedimentation, destruction of vegetation, and flushing of nests or eggs of amphibians and waterfowl. This is particularly important to adjacent wetlands and aquatic features where nutrients can enrich the system and lead to an abundance of nuisance weeds and / or algae (MNRF, 2010b).</p>

Recommended native plantings should:

- enhance diversity with consideration for species shifts resulting from warming temperatures due to climate change;
- enhance diversity with consideration for existing and future pest impacts to tree/shrub species;
- add complexity to both horizontal and vertical structure;
- consider mosaics of different trees and shrub species;
- consider light and noise impacts by creating a physical barrier;
- use native pollinator friendly seed mixes to promote the establishment of pollinator and foraging habitat; and,
- select species appropriate to the species composition of the natural heritage feature(s) being protected as well as the local soil composition and structure.

Management of Invasive Plants

Removal of invasive plants within the Ecological Buffer area and within 10 m of the edge of the identified natural heritage feature will improve overall species diversity. Priority species that must be removed include: common buckthorn, glossy buckthorn, common reed (*Phragmites*), Japanese knotweed, dog strangling vine, and giant hogweed (City of London, 2017). Those on the watch list should also be removed in accordance with the City of London Invasive Plant Management Strategy.

Where appropriate, targeted invasive species management and restoration extending into the feature itself should also be considered.

Other Structural Enhancements

Creation and installation of site and feature-appropriate habitat enhancements such as: addition of woody debris piles, pits and mounds, bird and bat structures, reptile nesting areas and hibernacula. Note that dead wood is important habitat and food resources for many birds, insects and lower plant species where woody biomass should be retained.

5.4 Permitted Uses within an Ecological Buffer

Ecological Buffers are to be zoned to generally be kept in a predominantly naturalized state with no permanent structures or development. However, *The London Plan* does support the inclusion of both pathways and trails in the NHS, including in Ecological Buffers adjacent to NHS Features and Areas, as long as they support the protection of the natural features and their functions, and also broadly supports the incorporation of Low Impact Development measures and green infrastructure.

1389_ *The following uses may be permitted in the Green Space Place Type:*
... 2. *Recreational uses associated with the passive enjoyment of natural features including pathways and trails provided that such uses are designed, constructed and managed to protect the natural heritage features and their ecological functions.*

475_ Promote innovation by encouraging green infrastructure, stormwater attenuation, re-use, and low-impact development.

In the City of London, “pathways” typically refers to paved multi-use or maintenance paths intended to support community health, mobility, connectivity and the active transportation network and / or infrastructure maintenance access. These pathways consist of a maximum of 3 m of paved width with 0.5 m to 1.0 m of mown grass for clearance on either side, for a maximum total width of 5 m. “Trails” in the City of London refers to a range of unpaved but still formal connections intended to support passive activities such as hiking and nature enjoyment. Trails range in widths but are typically narrower than pathways and surfaced with different materials such as crushed limestone or woodchips, and may incorporate sections of raised boardwalk or other structural works where needed to help protect sensitive ecological areas.

From a natural heritage planning perspective, formal pathways and trails in Ecological Buffers to natural features can be considered to be tools to help manage access to public open spaces appropriately (e.g., It is acknowledged that pathways and trails can be vectors for negative impacts (e.g., human disturbance near the feature, increasing opportunities for encroachment into the feature, inadvertent spread of invasive species) (e.g., Thompson, 2015). However, there are many gaps in the science (e.g., Ballantyne and Pickering, 2015) and the applied literature from urban areas (e.g., City of Toronto, 2013; TRCA, 2019; IVUMC, 2019) in increasingly recognizing that having formal trails and pathways that are carefully planned and designed can go a long way to balancing access and feature protection by:

- Providing access along and outside of the feature boundaries, thereby taking some of the pressure off of potential trails within the feature, and
- Where located in the interface between rear lots and Ecological Buffers to features, providing a “clean break” and some intervening public space that is manicured before the naturalized portion of the Ecological Buffer begins, thereby limiting the temptation of adjacent landowners to encroach (e.g., through dumping yard waste, extending their back yard by mowing, installing a tree fort or shed, etc.).

In addition, low-impact development measures are encouraged through several policies in *The London Plan* to support onsite stormwater management (e.g., water attenuation and quality control) and site drainage. Although not formalized in policy or green development standards, the City’s current practice is to allow Low Impact Development measures within Ecological Buffers that do not require regular maintenance or have engineered components to them, and that contribute to maintaining the feature-based or site-specific water balance. Permitted LID measures would not require regular disruptive maintenance or include control structures (e.g., orifice controls, catchbasins). As such, stormwater management features such as vegetated swales, dry ponds and culverts may be accommodated within Ecological Buffers where such measures are supported through an EIS. It is with these directions in mind that the City is generally of the position that pathways, trails and “passive” low-impact development may be incorporated into Ecological Buffers, provided they are:

- designed, constructed and managed to support the natural heritage features and their ecological functions

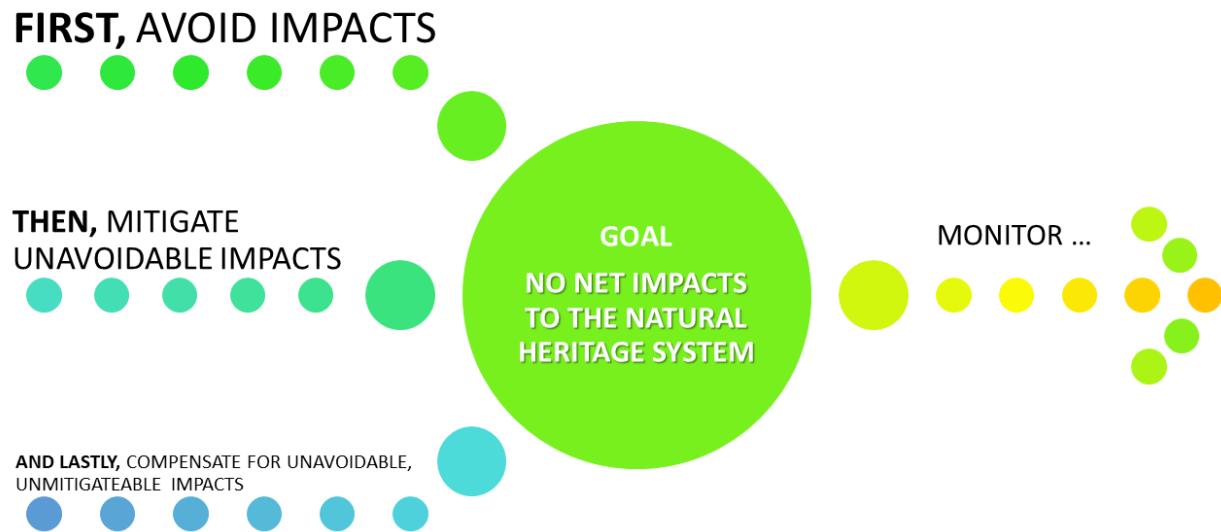
- located in the outer half of the buffer
- limited to a maximum of one third of the total Ecological Buffer width (e.g., occupying no more than 5 m of a 15 m Ecological Buffer and further away from the feature rather than closer) with the remaining Ecological Buffer being naturalized, and
- are proposed within Ecological Buffers that meet or exceed the minimums established in **Table 5.2**.

Pathways, trails and / or passive Low Impact Development measures may only be permitted where they are demonstrated to meet all the criteria above in an EIS at the City's discretion, and in consultation with the appropriate agencies, where their regulated areas overlap with the features and Ecological Buffers in question.

Notably, Ecological Buffers are not to count towards feature-based compensation measures that may be required (see **Section 6**). However, wetland feature compensation may be accommodated within Ecological Buffers to fish habitat where the City is working to implement a complete corridor that is providing a net ecological enhancement in both area and function to the subject lands, where such measures are supported through an EIS.

In addition, amenities such as gazebos and other installations that could result in disturbance to and / or permanent encroachments into the naturalized portions of the Ecological Buffer are not permitted, irrespective of their ownership.

6. Ecological Replacement and Compensation



The City of London, like many urbanizing jurisdictions in southern Ontario, is expected to accommodate a certain amount of growth over the coming decades and beyond. While this presents opportunities for the City, it also means ever increasing pressures on the remaining NHS Features and Areas within its urban boundary.

The London Plan includes policies intended to help ensure what is significant and valued in London from a natural heritage perspective is sustained for the long term. The bulk of the Environmental Policies in *The London Plan* requires the outright protection of NHS Features and Areas confirmed as components of the NHS (as per **Section 3** and **Section 4**), including Ecological Buffers as appropriate (as per **Section 5**) are intended to be protected in accordance with the legislative (*Planning Act*) and supporting policy (i.e., *Provincial Planning Statement* and *The London Plan*) tests. However, there are some limited cases and contexts in which removal of part, or all, of a NHS Feature or Area may be contemplated through the planning process. In these cases, replacement and / or compensation for that feature and / or area is required in the City of London with the intent of achieving no net loss or, preferably, a net environmental benefit in natural feature area and / or ecological functions (as per **Section 2.6**). This section of the guidelines is provided to facilitate the implementation of such requirements, where applicable.

Negative impacts to Natural Features and Areas identified for protection can generally be avoided, minimized, and mitigated at the site-specific scale with adequate technical knowledge, compromise and collaboration applied through the planning process. However, under some circumstances, residual damage to natural features and their functions is unavoidable. After first exhausting all options for avoidance (as illustrated in **Figure 6.1**), followed by minimization and mitigation of impacts, portions of (or entire) natural features may be approved for removal under the condition that ecological compensation take place to ensure that there are “no net negative impacts.”

This section has drawn on the *Guideline for Determining Ecosystem Compensation* developed by Toronto and Region Conservation Authority (TRCA, 2018), as well as other relevant and current technical and scientific sources. Although the EMG are well established and have been applied in the City since 2007 best practices and precedents related to ecological replacement and compensation are continuing to evolve, and as such this particular chapter is expected to be updated during one or more future update processes, in response to emerging science, precedents and / or findings of monitoring applicable to the City of London.

Figure 6.1: Illustration of the required approach whereby all options for avoiding and / or mitigating impacts must be explored with the City before compensation can be considered

6.1 Context and Process

This section provides the policy context, the high-level scientific and technical context and the process for developing and implementing an Ecological Replacement and Compensation Plan in the City of London.

6.1.1 Policy Context

From a natural heritage perspective, the fundamental policy “test” used as a basis for approving – or rejecting – a development proposal in Ontario is what is referred to as the “no negative impacts” test based on the language from the *Provincial Planning Statement* (MMAH, 2024) which states: *“Development and site alteration shall not be permitted in [insert the feature(s) in question] unless it has been demonstrated that there will be no negative impacts on the natural features or their ecological functions”*. This language is carried forward into *The London Plan* for the various components of the NHS (i.e., Significant Woodlands, Significant Valleylands, SWH, Wetlands and Significant ANSIs (Policy 1391_)), and further defined through these guidelines (as per **Section 2.6**).

Ecological replacement and compensation will be approved on a case by case basis subject to all applicable federal, provincial and municipal policies and in consultation with the local Conservation Authorities and Province in cases where they regulate all or part of the feature in question.

Replacement and compensation of natural feature(s), where permitted by the City, shall be implemented on at least a one-for-one (1:1) land-area basis (as per *The London Plan* Policies 1334, 1342B, 1401 and 1402) and, at a minimum, aim to replace any ecological functions associated with the removed feature. The only exception to these requirements is for small wetlands (i.e., less than 0.5 ha) when less than 1:1 may be considered if the proposed compensation will provide a net gain or net environmental benefit to the NHS (as per *The London Plan* Policies 1334_1 and 1334_2).

These guidelines do not supersede and are to be implemented in conjunction with other applicable restoration, rehabilitation and / or replacement compensation policies and regulations including:

- ***The London Plan*** Management, Restoration and Rehabilitation Priorities Policies (1417 a through j)
- ***The London Plan*** tree replacement Policies (399_4, a through e, 401_13) and
- Overall Benefit Permits issued under the *Endangered Species Act* and / or the *Fisheries Act*.

There may be cases where a portion of the impact to a feature or function is compensated through one mechanism while the remaining impact is compensated through a different mechanism. For example, compensation required through the *Endangered Species Act* may address impacts to one particular species but may not compensate for all of the ecological structures and functions that will be lost. In such cases, determining the additional compensation required can be accomplished through these guidelines and in consultation with the City.

Furthermore, in cases where replacement and compensation has been approved in principle by the City but cannot be fully accommodated on the subject lands, ***The London Plan*** Management, Restoration and Rehabilitation Priorities Policies 1418 through 1420 may help guide the identification of alternative areas for such works.

6.1.2 Scientific and Technical Context

Ecological replacement and compensation are approaches that can be adopted to achieve no net loss and net environmental benefit through the creation, restoration and / or enhancement of natural features and their ecological functions to compensate for those which will be removed or disturbed elsewhere (Brown et al., 2013; Morrison-Saunders and Pope, 2013). No net loss and net environmental benefit are outcomes of compensation for unavoidable losses of biodiversity and / or habitat which are considered neutral or positive, respectively (Bull and Brownlie, 2017). There has been an important shift in replacement and compensation policies away from focussing on replacement and towards focussing on net environmental benefit to improve the short and long-term outcomes of biodiversity offsetting (Bull and Brownlie, 2017; Maron et al., 2018) and, also, to incorporate something of a safety net for situations where the proposed replacement takes longer than anticipated to function as planned. Thus, the goal of replacement and compensation in City of London is to obtain a net environmental benefit, wherever feasible.

Ecological features and systems are highly complex, and although some of the simpler feature types that occur in London and southern Ontario can be replicated reasonably

well, it requires a good technical understanding of the feature's key requirements, applied experience implementing the habitat creation, enhancement or restoration works, and a commitment to post-installation management and monitoring (also see **Section 6.6.2**). Consequently, although most ecological replacement and compensation projects have the objective of no net loss, in reality achieving no net loss of biodiversity or ecological function can be very challenging (Bekessy et al., 2010; Gibbons et al., 2015; Simmonds et al., 2019). Therefore, area compensation ratios of greater than 1:1 can be necessary to help ensure full replacement of ecological structure and functions (zu Ermgassen et al., 2019).

In addition, replacement and compensation projects require long-term monitoring to assess progress towards no net loss or, preferably net environmental benefit (or net positive effects, as per **Section 2.6.6.7**), and may require additional adaptive management actions to achieve the established ecological objectives.

6.2 Approval Process

Natural Heritage System (NHS) Features and Areas for Consideration

Through the planning and development process, certain natural features and areas confirmed for inclusion within the City's NHS that are not protected by other provincial or federal regulations may be permitted to be impacted by the planning approval authority (in this case, the City of London), but only in cases where avoidance of negative impacts is not possible and options for mitigation of negative unavoidable impacts are limited or not feasible. In all cases, compensation is to be explored as a last resort, as illustrated in **Figure 6.1**, and will generally only be contemplated if the replacement or compensation is expected to fully replicate the extent and functions of the existing feature, or to provide an enhancement as compared to the existing feature.

As summarized in **Table 2.1**, the City is responsible for confirming the following NHS Features and NHS Areas, in consultation with the local Conservation Authority where the features are within their regulated areas:

- Wetlands (excluding PSW)
- Significant Woodlands and Woodlands
- Significant Valleylands and Valleylands
- Significant Wildlife Habitat (SWH)
- Environmentally Significant Areas (ESA), and
- Upland Corridors.

The following guidance is intended to help implement ecological replacement and / or compensation, where the policies permit and where City agrees to consider it, for the above features.

Notably, these guidelines do **not** apply to or provide guidance related to replacement, compensation or rehabilitation of watercourses or Fish Habitat. NHS Features that are confirmed by other provincial or federal authorities (i.e., Fish Habitat, Habitat of Endangered Species and Threatened Species, and ANSI) may also be impacted in accordance with the applicable provincial or federal regulations, in part or in whole. In these cases, compensation or comparable activities may be permitted, with the

specifics (not addressed in to be in conformance with the applicable provincial or federal regulations) and in consultation with the applicable regulatory authority.

Approval Process for Feature Replacement / Compensation

Ecological compensation may be permitted and approved as part of an EIS under the *Planning Act*, or through an EIS or comparable Environmental Study completed in support of the installation or expansion of public infrastructure through the *Environmental Assessment* process. In all cases, ecological compensation for NHS components under the City's jurisdiction will not be approved as the 'default' and will only be considered if unavoidable loss remains once the protection hierarchy has been exhausted (as illustrated in **Figure 6.1**).

Prior to the approval of an application containing proposed ecological replacement and / or compensation, the proponent shall demonstrate the following:

- Compliance with all applicable policies and legislation;
- That the proposed compensation achieves "no negative impacts" as outlined in the *Provincial Planning Statement*;
- That all efforts to avoid, minimize, and mitigate have been taken and why impacts are unavoidable;
- No negative impacts, no net loss, and / or net environmental benefit;
- That the proposed ecological compensation is within the same subwatershed in close proximity to the original feature (preferred), or in an area that will provide a net environmental benefit to the NHS to maximize connectivity and linkages; and,
- That a proposed Ecological Replacement and Compensation Plan is included within or as an Appendix to an EMP (as described in **Section 2.6, 6.3, and 7.2**).

In instances where ecosystem replacement or compensation has been approved in principle by City Staff (and the applicable Conservation Authority where the feature falls within their regulated areas), the proponent must retain an Ecologist, potentially with one or more experts from other related disciplines (e.g., Landscape Architect, Arborist, Registered Professional Forester, Engineer, Hydrogeologist, Geotechnical Consultant) to develop and oversee the implementation and monitoring of the Replacement and Compensation Plan.

It is strongly recommended that once the City agrees in principle to replacement and compensation, that the proponent develop and get in principle approval of a Concept Plan before moving forward with any detailed plans or designs.

No removals of part or all of a natural feature and / or area may proceed prior to approval of the Replacement and Compensation Plan. This plan shall outline an approach and provide detailed plans that attempt to replicate, to the extent possible and without significant delay or lag time, the same ecosystem structure and associated level of ecosystem functions that are to be lost, in both the private land development process (under the *Planning Act*) and the public infrastructure process (under the *Environmental Assessment Act*) (TRCA, 2018).

Ecological Buffers and Feature Replacement / Compensation

Ecological Buffers required for NHS components identified and requiring protection on the subject lands (as per **Section 5**) are not to be counted towards fulfilling any agreed-to replacement or compensation of other NHS Features, or parts of features approved for removal.

In addition, replacement and compensation features will require Ecological Buffers wherever the feature is to be abutting a non-natural land use (e.g., road, parking lot, residential yard, etc.). Ecological Buffer widths are to be determined based on the guidance provided in **Section 5** and in consultation with the City. Notably, Ecological Buffer width determinations are to be based on the NHS component for the replacement (restored) area.

6.3 Guiding Principles for Ecological Compensation

The following are objectives of replacement and ecological compensation:

- To restore, replace, and preferably, enhance the ecological structure and function of the affected NHS by achieving no net loss of ecological features or functions, and where possible, achieve a net environmental benefit (i.e., a net gain of ecological features and / or functions);
- To implement compensation within the same subwatershed, and preferably in as close proximity to the original feature as possible;
- To locate replacement and compensation works within or adjacent to the NHS so that system connectivity is maintained and, preferably, enhanced;
- To complete compensation projects promptly so that ecosystem functions are re-established before losses occur, or as soon as possible after;
- To ensure transparency and accountability throughout the process of planning, implementing, monitoring and evaluating the effectiveness of the replacement and / or compensation; and,
- To incorporate adaptive management and climate resiliency into compensation based on the scientific literature and the results of effectiveness monitoring.

Furthermore, ecological replacement and compensation shall be informed by current knowledge of the City ecosystems, applicable watershed studies, relevant studies by related disciplines (e.g., hydrogeological, hydrological and / or geotechnical) and any applicable Conservation Authority and be carried out in a transparent and timely manner.

6.4 Ecological Replacement and Compensation Plan

The Ecological Replacement and Compensation Plan will be reviewed by City staff and in consultation with applicable agencies where required. The Plan is to be aligned with the principles outlined in **Section 6.3** and include, but may not be limited to, the following:

- Rationale for ecological compensation (i.e., explanation of why residual impacts are unavoidable) and feasibility of the compensation

- Description of the feature type, ecological structure and function(s) of the natural feature (or portion thereof) to be removed or disturbed, including the size of area proposed for removal
- Specific ecological objectives for the replacement and compensation, with specific targets where appropriate
- Rationale for the proposed compensation ratio ($\geq 1:1$ land-area basis) and the area of proposed compensation
- Description of the proposed compensation location (refer to **Section 2.6.6.8** and **6.3**)
- Construction schedule (e.g., phasing) and completion timeline
- A Concept Plan, including the size and location of the replacement / compensation in relation to the NHS
- Implementation plans and detailed design drawings, including any required grading plans (stamped by a Landscape Architect and / or Engineer), ESC plans to ensure protection of other NHS components, and planting plans
- Plantings should specify native species appropriate for the site and feature type, with consideration for climate change resiliency (e.g., inclusion of a small proportion of species native to southern Ontario with ranges just south of London)
- Post-installation maintenance requirements, including provisions for supplemental invasive species removal and native plantings where appropriate, particularly for woodland features
- A monitoring plan specific to the replacement / compensation that evaluates the extent to which the established objectives and targets are being met (refer to **Section 7.2.5.2**), and
- Potential additional measures (e.g., adaptive management) to be undertaken by the proponent if the replacement / compensation objectives and targets are not being met.

6.5 Determining Appropriate Measures

The ability to successfully re-establish ecological structure and function is, in part, dependent on the type of natural features and the specific type of vegetation community being restored. Some vegetation community types can be readily restored in a relatively short period of time (e.g., meadows), while others take longer (e.g., young woodlands) and still others are very difficult or impossible to replicate with the current knowledge and techniques (e.g., treed swamps, bogs).

For example, the functions of some vegetation community such as cultural meadows and some marshes can be established relatively quickly (e.g., within five years) as they are dominated by perennial grasses and forbs which can reach maturity over the course of a single season and with the right soils and hydrology can support habitats for a range of species within a few years (Solymar, 2005; TRCA, 2018). The functions of other features such as woodlands take much longer to re-establish due to their long developmental periods (McLachlan and Bazely, 2003; MNRF, 2017a).

As such, there can be a substantial time-lag between the removal of an established wooded feature and the time required for the compensated area to fully replace the ecological function and services provided by original feature (e.g., 20 to 50 years).

Feature compensation considerations should consider but not be limited to:

- Topography and drainage of the existing and proposed feature;
- Community type (based on ELC);
- Wildlife habitat types and structures to be replicated or added as enhancements;
- Soil type, structure and quality of the existing and proposed feature composition and processes;
- Surface water contributions and hydroperiod; and,
- Groundwater processes and interaction.

6.5.1 **Wetlands**

Once the replacement and compensation is approved in principle by the City, for wetlands, the quantification of the physical area of the proposed loss is to be based on the feature delineation using ELC, OWES (as described in **Section 3**) and Critical Function Zones (CFZs) and confirmed with the City and the appropriate Conservation Authority.

6.5.2 **Significant Woodlands and Woodlands**

Once the replacement and compensation is approved in principle by the City, for Significant Woodlands, the quantification of the physical area of the proposed loss is to be based on the feature delineation using ELC and OWES (as described in **Section 4.2**) and confirmed by the City.

For Woodlands, trees approved for removal through the planning process are to be replaced in accordance with the Forest City Policies in *the London Plan*.

6.5.3 **Other Features**

Where approved in principle by the City, other features within the City's jurisdiction may be considered for replacement compensation on a case by case basis at a minimum of 1:1 land-area basis, or greater as required through an approved EIS.

As with Wetlands and Significant Woodlands / Woodlands, a proposed replacement and compensation concept that is aligned with the policies, principles and guidelines above should be put forward to the City before work goes into developing detailed plans and designs.

Ultimately, an approved Ecological Replacement and Compensation Plan, will guide the site preparation, construction / creation and post-construction maintenance and monitoring of the feature.

6.6 Implementing Replacement and Compensation

It is important to outline a clear implementation plan for each feature to be compensated for to maximize the likelihood of replacement or enhancement of ecological structure, function and services within the City of London's NHS.

6.6.1 Site Selection

In all cases, provision of on-site compensation is the preferred option as it will be in proximity to where the loss is proposed and avoids the logistical complexities of finding suitable lands elsewhere in the City, preferably within the same subwatershed.

However, in some cases where the subject lands cannot accommodate part or all of the replacement or compensation, proponents may explore directing compensation on alternate suitable lands. The details of such an arrangement will need to be confirmed and formalized in consultation with the City, however some additional guidance is provided here.

Ecological Considerations

Appropriate site selection for ecological replacement and compensation will increase the likelihood of achieving no net loss or, where possible, a net environmental benefit (or net positive effect), specifically when considering landscape-scale conservation goals and improving ecological system connectivity (Koh et al., 2014).

Potential naturalization sites have been identified by the City of London (as outlined in *The London Plan*) which are generally good candidates for restoration, enhancement, and expansion of the NHS. Some potential naturalization sites are found on Map 5 – Natural Heritage in *The London Plan*, however not all potential sites are mapped and thus, consultation with the City of London is recommended if other potential areas are identified. Further, not all sites are created equal and consultation with experts (e.g., Ecologists, Hydrogeologists, Engineers, etc.) is typically required to help identify appropriate locations for ecological compensation. Habitat creation and restoration is generally most successful when a project understands and works with the prevailing biophysical conditions on site (e.g., climate / exposure, topography, drainage / hydrology, soils).

The following should be considered in determining the site for ecological replacement and compensation within the City of London:

- Proposed sites must be able to support the size of the compensation, the associated Ecological Buffer(s), as well as the function and services provided by the feature;
- Proposed sites for compensation of a feature should ideally be outside of the current NHS to ensure no net loss, and preferably net environmental benefit. Securing or purchasing land for compensation that is already identified as part of the NHS would result in a Net Loss to the overall area of the system.
- Compensation should be planned adjacent, or in close proximity, to the NHS to maximize connectivity and linkages. The guidelines outlined in **Section 3** and **4** can help inform site selection (e.g., bay areas, connectivity, ecological function) for compensation.

- The size, shape and structure of the proposed compensation should contribute to the City of London's goals for the NHS. In general, features that are circular or squarish will be preferred over long narrow extensions.
- Newly restored ecosystems must be buffered and should also be situated to help ensure they are protected from the effects of adjacent land uses.

Planning and Management Considerations

Compensation should generally be directed to lands that are already or will be transferred to a public or non-profit agency, or established as a conservation easement to ensure the long-term protection of ecological function and services being compensated.

If proposed sites for replacement, compensation or enhancement are not available within the Urban Growth Boundary, the City of London and any other applicable agencies may in exceptional cases, identify lands that are within the NHS but are in need of restoration or enhancement. However, this shall be the exception to the rule, given that this could result in a Net Loss in the amount of land within the NHS. To ensure no net loss and long term protection of the NHS, lands secured for replacement and compensation should be appropriately zoned and mapped for the NHS component.

6.6.2 Replicating Ecosystem Structure and Functions

Ecosystems are complex and dynamic systems. Regardless of the approach to determining the level of compensation required, attempts to replace lost ecosystem structure and functions will fall short in many instances, at least in the short term. Understanding this limitation, the Guideline establishes an approach that attempts to replicate, to the extent possible and without significant delay or time-lag, the same ecosystem structure, and associated level of ecosystem functions that are to be lost.

To ensure that ecosystem structure and function is replaced, or preferably improved, consultation on the compensation plan and design must be undertaken with the City of London and any other applicable agencies. For robust examples of compensation project design and estimated costs, refer to *Guideline for Determining Ecosystem Compensation*, Appendix A (TRCA, 2018). Construction activities related to the implementation of compensation projects should refer to Section B – Part 5 – *Tree Planting and Protection Guidelines* (TPP) and Part 6 – *Parks and Open Spaces* in the City of London's *Standard Contract Documents for Municipal Construction* (City of London, 2020).

In exceptional cases, when a feature approved for removal cannot be compensated for on-site and another parcel of land cannot be identified and secured off-site, at the City's discretion, proponents may provide funds to the City in lieu of undertaking the compensation project themselves. The amount of funds will be based on the cost to restore the impacted ecosystem's structure and the cost of replacing its land base.

6.6.3 Plant Selection

Plant selection is critical in attempting to compensate for a loss of natural features. Thus, the rationale for plant selection, with consideration for the feature being replaced

and the associated ecological functions and services, must be included in the Ecological Replacement and Compensation Plan.

Plant selection will require a case-by-case assessment and consultation with the City of London and other applicable agencies. Native species diversification must be considered with respect to climate change resilience, known and emerging pest impacts and overall longevity of ecological function.

CanPlant (Dougan and Associates, 2020) is a recommended resource that can be referenced to ensure plants selected meet the environmental conditions of the proposed site. Species selection considerations may include, but are not limited to: vegetation type (e.g., woody, herbaceous), species native to the Mixedwood Plains ecozone (preferably Ecoregion 7E), light and moisture requirements, soil requirements, tolerances (e.g., pH, drought, etc.), and natural habitat type.

6.7 Tracking Compensation

Ecological replacement and compensation monitoring is needed to determine whether compensation has achieved no net loss (of area and / or ecological function) or net environmental benefit (i.e., enhancements as compared to original conditions) of the replicated feature and ecological function(s). For example, if a wetland has a core function of providing amphibian breeding habitat for at least two species, monitoring should assess amphibian breeding in the replicated / compensated feature to ensure no net loss (i.e., at least two species of amphibians still breeding), or net environmental benefit (more than two species of amphibians still breeding).

Further guidance related to monitoring requirements are outlined in **Section 7.2**. The results of monitoring must be provided to the City of London as outlined in **Section 7.2**, to allow for the implementation of adaptive management, and for any necessary adjustments to compensation strategies moving forward.

7. Environmental Management and Monitoring

7.1 Policy and Context

A monitoring plan is one of the requirements of an Environmental Management Plan for any EIS developed for the City of London (as outlined in *The London Plan Policy 1436_4*) as part of the approval process for development or infrastructure projects adjacent to any components of the Natural Heritage System (NHS). The monitoring plan and subsequent implementation is critical to tracking any loss of NHS Features and Areas or their associated ecological functions over time (MNRF, 2010b), and to providing a basis for adaptive management or mitigative measures in the area being monitored and / or informing forthcoming developments.

Consideration for monitoring early-on in the planning process is highly recommended to ensure appropriate resources are allocated for the completion and implementation of an approved monitoring plan. In some cases, it may be appropriate to establish locations and use methods for existing conditions data collection that can be replicated and also serve as baseline data for monitoring, and potentially for during and post-construction monitoring as well.

Monitoring plans must be approved by the City of London prior to the start of construction and are determined on a case-by-case basis considering the potential impacts of development and infrastructure, as well as the natural features and ecological functions identified (and evaluated) within or adjacent to the proposed development or infrastructure site. The detailed pre-construction and construction monitoring plan is to be included in the approved Environmental Monitoring Plan (EMP) (as described in **Section 2.6.6.9**) developed from the Environmental Recommendations of an EIS.

Monitoring will enable planning authorities, through development and infrastructure agreements, to require subsequent changes to site conditions if the environmental effects are found to exceed predicted effects or targets, or if there are identifiable negative effects. Monitoring the environmental effects of development and infrastructure also provides well-documented, local examples of best management practices for particular types of development or infrastructure projects and particular types of features or functions. Monitoring may encompass a number of different measures as determined through the EIS process based on the potential impacts and mitigation measures that have been approved.

Common conditions and / or mitigation measures that may require monitoring include, but are not limited to:

- hydrogeological and hydrological processes (e.g., maintenance of pre-development groundwater levels and flows to watercourses, maintenance of water balance in wetlands)

- erosion and sediment control measures (e.g., spills and sediment releases)
- tree protection measures (e.g., machinery in identified tree protection zones)
- natural feature encroachments (e.g., no grading or dumping within protected features)
- ecological functions of natural features (e.g., continued presence of amphibian species and / or forest bird species documented pre-development)
- successful naturalization of Ecological Buffers and,
- plant survivorship from feature-based restoration and / or compensation.

Monitoring should be tailored to the local conditions and anticipated impacts, focused on measures that can be documented consistently and include indicators or triggers for adaptive management where appropriate, and indicate if the proponent, the City or another agency will be responsible for undertaking the adaptive management if required. Measures and responsibilities will ultimately be determined in consultation with the City and any other responsible agencies.

The definition of clear goals and objectives, as well as robust information on the proposed mitigation measures and potential impacts, are critical in determining which aspects of the natural features (and their ecological functions) require monitoring. This will aid in ensuring that the monitoring program will not only be effective, but efficient and streamlined (e.g., targeted monitoring).

7.2 Environmental Management Plan (EMP) Requirements

As discussed in **Section 2.5** the primary deliverable of the EIS is the Environmental Management Recommendations section. The environmental management recommendations may form a stand-alone Environmental Management Plan (EMP), which may be approved by the City as part of the EIS or as a subsequent submission that is based on the proposed development, findings, mapping and recommendations in an approved EIS. The EMP may be used as reference during construction to ensure the contractor is aware ecological specific conditions and protocols during construction.

The purpose of an EMP and how this type of natural heritage study fits into the planning process is outlined in **Section 2.2.4** of these EMG.

How is an EMP updated if needed?

In some cases, EMP mapping and/or recommendations may be refined at the Site Plan, Focused Design or construction stages of the project in response to additional information collected or based on how the detailed design has progressed to address the EIS recommendations and objectives of other complementary disciplines (e.g. hydrogeology, water balance, grading) after the EIS has been accepted and the EMP has been approved (e.g., monitoring information) and/or to changes in environmental conditions outside the proponent's or City's control (e.g., a wind storm resulting in the need for high risk tree removals and replacements along a trail planned for public use). Such updates to an approved EMP may be in the form of an Updated EMP or an Addendum to an existing EMP, at the City's discretion.

The typical components of an EMP include:

Natural Heritage System (NHS) Components – The NHS components present within and adjacent to the subject lands in which development is generally not permitted. This may include regulated features and hazard lands. These areas should be delineated on an EMP figure(s) to be included in this section of the EIS. Recommendations regarding the NHS Components must require that these areas are delineated on Site Plans and contract drawings with notes that identify the areas as “no development, and no entry” areas.

Ecological Buffers – Ecological Buffers must be clearly delineated on the EMP figure(s). Recommendations regarding Ecological Buffers must require that these areas are delineated on Site Plans and contract drawings with notes that identify “no development, and no entry” areas. Pathways, trails or passive Low Impact Development measures proposed and approved for inclusion in the Ecological Buffer (in accordance with the criteria and process outlined in **Section 5.4**) will be clearly delineated. Additionally, any management recommendations and planting recommendations for Ecological Buffers shall be detailed such that the recommendations can be added to landscape drawings with clear specifications for seed mixtures, shrub and tree plantings and other measures.

Restoration, Enhancement and Compensation Measures / Areas – Areas that have been identified for restoration, enhancement or compensation shall also be identified on the EMP figure(s). Similar to the Ecological Buffers, management recommendations and planting recommendations for restoration, enhancement and compensation areas shall be detailed such that the recommendations can be added to landscape drawings with clear specifications for seed mixtures, shrub and tree plantings and other measures.

Construction Monitoring and Inspection Plan – The requirements for mitigation measures during construction must be detailed in a Construction Monitoring and Inspection Plan. This plan must provide standard construction mitigation measures and mitigation measures specific to the project and subject lands. Components that may be included in a Construction Mitigation and Monitoring Plan include:

- *Delineation and specifications for tree protection and / or ESC fencing* – protection fencing to be installed outside of the Natural Heritage System (NHS) components including Ecological Buffers (as applicable) should be identified on maps or drawing in the EMP, site plans and contract drawings.
- *Delineation and specifications for wildlife exclusionary fencing* – Wildlife exclusionary fencing designed to prevent wildlife from entering the construction areas of a site should be identified on the EMP, Site Plans and contract drawings. * Note that this and the above noted ESC fencing may be one and the same if the specifications for both are met.
- *Species at Risk and Wildlife Handling Protocols* – During construction, SAR and other wildlife may enter the site putting them at risk of injury or mortality from construction equipment, vehicles or construction crews working on the site. The preparation of a Species at Risk and Wildlife Handling Protocol document can prevent or mitigate injury or mortality. This protocol document should be tailored

to the project and the species present within the subject lands and the broader study area.

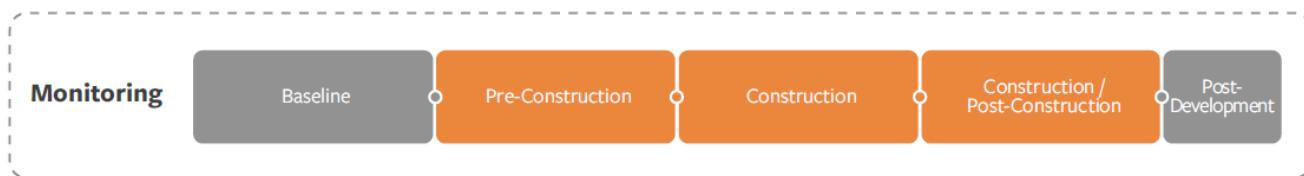
- *Dewatering and temporary stormwater management* – Dewatering and temporary stormwater management measures may be required for a construction site. Mitigation measures for these measures should be detailed and specified on contract drawings for the project and clearly detailed in the EMP.
- *Dust suppression measures* – Dust suppression measures may be required for the construction works on the site. If required, dust suppression measures should be detailed and included in the specifications on contract drawings.
- *Construction Monitoring* – The monitoring of the above mitigation measures should be an integral part of the plan during construction. The frequency and details of the construction monitoring should be tailored to the specific project requirements as identified in the EMP. The environmental monitoring program should be specific to the EMP and should not be considered replication or replacement for regular site inspections for other purposes.

7.2.1 Environmental Management Plan Report Requirements

- Goals and objectives of the mitigation being monitored are clearly outlined to provide a baseline;
- A timeline of the monitoring requirements for each of the development stages (e.g., pre-, during, and post-construction) should be clearly outlined;
- Mitigation measures should be clearly defined (and geo-referenced), including the inclusion of measurable thresholds (as approved on a case-by-case basis as approved by the City of London through the EIS process) that may trigger remedial action;
- Data collection methods, which should be standardized to ensure the long-term sustainability of the monitoring program, need to be clearly defined and applicable to the goals and objectives;
 - To assess baseline conditions, monitoring should employ sampling methods that accurately assess ecological conditions using a standardized approach that can be replicated as outlined in **Appendix C**.
- Clear monitoring programs that include the following three types of monitoring:
 - Baseline to outline the existing conditions of natural features and their ecological functions in accordance with established and accepted data collection standards;
 - Compliance with approved EIS requirements, ESC monitoring and applicable legislation; and,
 - Post Construction monitoring of measures implemented to mitigate potential impacts from development.
- Processes or mechanisms for data storage / transfer, quality assurance, and analysis of results for initiating responses to threshold triggers;
- Roles and Responsibilities, along with the required qualifications, of those undertaking the monitoring program;
- An outline of the reporting structure required for the development or infrastructure as determined through an approved EIS;

- All monitoring data must be shared with the City of London as a part of each monitoring report.
- Contingency measures or strategies should mitigate not be effective in achieving no net impacts as per the approved EIS; and,
- Amendments may be necessary as the detailed design, proposed mitigation, or construction activities change throughout the planning process (following the approval of an EIS).
- Monitoring should be undertaken intervals appropriate to the feature. Typical intervals include the 1, 3, and 5-year points after construction and or planting is complete, in order to allow for early detection and correction of any planting or construction failures.
- Monitoring and maintenance will typically be the responsibility of those undertaking the compensation project. This responsibility will be confirmed and documented as part of the agreements outlined in **Section 6.3**. Monitoring reports will be written to document project results. Where projects are not functioning as designed and approved, investigations will be undertaken to understand why, and securities may be utilized to correct and / or complete restoration works. Further, modifications may be required to ensure that the project is successful; the need for these can be stipulated in an agreement and assured through securities held by the public agencies (see also **Section 6.3**). Monitoring and maintenance often constitute a learning process that can inform future compensation decisions and implementation plans.

City of London staff, with input from local Conservation Authorities and any other relevant review agencies, will use the details contained in the approved EIS to guide the review of proposed compensation projects to facilitate appropriate and comprehensive ecological compensation. As per the usual plan review process, all comments from the TRT will be conveyed to the proponent by the City of London staff on the file.


7.2.2 Inspection and Monitoring Timeline and Responsibilities

As development and infrastructure progresses, along with the subsequent implementation, can be highly dynamic, it is critical to define the roles and responsibilities of the monitoring component for the entirety of the project and into the post-development phase. It is the responsibility of the **proponent** to create a monitoring plan (to be approved through the EIS process) and to implement monitoring until the end of the Assumption Development Stage (i.e., when the developer has satisfied all parts of the development or infrastructure agreement and the assumption has been granted) or once the proponent has fulfilled the requirements outlined in the EIS.

For each project, the proponent is required to articulate timelines and responsibilities of monitoring, including that for pre-, during-, and post-construction, compensation, and up until assumption. If the feature is being transferred into City of London ownership post-assumption, long-term monitoring will be conducted by the City of London. However, if the feature is retained as private ownership, long-term monitoring will be the responsibility of the proponent.

In general, the monitoring plan should be developed with consideration for the following general phases, depicted in **Figure 7.1**, which are described in subsequent sections of these guidelines:

- **Pre-construction** – to be completed prior to the initiation of construction activities
- **Construction** – to be conducted from initiation of construction activities until a specified build-out stage as determined in consultation with the City of London
- **Post-construction** – to be conducted following construction monitoring until the end of the Assumption Development Stage
- **Post-development** – to be completed as determined in consultation with the City of London, and
- **Compensation** – to be initiated upon completion of compensation project and continued until requirements have been met within the Ecological Replacement and Compensation Plan (as described separately in **Section 6.4**).

Figure 7.1: Environmental monitoring process stages

The City of London will require EIS monitoring reports throughout the process. The reporting timeline and structure will be otherwise determined through the approval of an EIS.

7.2.3 Pre-Construction Monitoring

Pre-construction monitoring will be approved as part of the EIS process for development and infrastructure projects. These monitoring programs and activities shall align with the recommendations provided in the EIS (see **Section 2.6.6.9**) and be used to inform the EMP. Some examples of variables to be monitored pre-construction (and thus through the entirety of the project or until monitoring is handed over to the City post-development) may include, but are not limited to, the following:

- Surface and groundwater quantity, quality, and shifts in hydrologic dynamics (e.g., water balance, drainage patterns) that may be influenced by development or infrastructure activities, including grading; and,
- Encroachments to protected NHS components, Ecological Buffer implementation and establishment, and effectiveness of other NHS protection measures such as fencing.

7.2.4 Construction Inspection and Monitoring

Upon initiation of construction activities, construction monitoring shall be initiated to assess changes to site conditions, as well as the implementation of mitigation measures (as outlined in the approved EMP). In general, the bulk of the monitoring during this phase will be focused on *compliance*. Compliance monitoring is implemented to ensure

that the approved conditions of the EIS, along with those outlined in applicable legislation, are met during the construction phase. This step is critical to ensure that the natural features, and their associated ecological function(s), are protected and that impacts are mitigated as outlined in the approved EIS. Some examples of compliance monitoring include the inspection of, but are not limited to, the following mitigation measures:

- Erosion and sediment control (ESC);
- Tree protection;
- Boundary delineation and setbacks;
- Ecological Buffer implementation;
- Area searches for wildlife;
- Protection of water quality and quantity;
- Maintenance of hydrogeological regimes, assessed in partnership with the applicable Conservation Authority policies and regulations; and,
- Respect for timing windows for approved works (e.g., related to bat overwintering, breeding birds and / or Fish Habitat restrictions).

Should the proposed development or infrastructure project be non-compliant with the approved EIS, immediate action shall be taken to ensure the correct implementation of mitigation measures in accordance with the EMP (refer to **Section 7.2.1**). Activities that may result in negative impacts to the NHS shall be halted as soon as the issue is identified.

7.2.5 Post-Construction Monitoring

As outlined in **Section 2.5.2.9**, the development of a post-construction monitoring plan should be initiated well before construction starts. The baseline information/data with which the post-construction monitoring information/data will be compared should be collected (ideally) in the year or two years before the start of construction.

The post-construction monitoring program shall include the monitoring of the recommendations of the EMP (i.e., Ecological Buffers, enhancement, restoration and compensation areas specifications) as well as the monitoring of potential impacts to the NHS. Monitoring of potential impacts should be simplified and repeatable to ensure replicability and program adherence.

In general, post-construction monitoring will take place at a build-out stage or after a percentage of the construction activities have been completed. The specific timeline for the transition from construction to post-construction monitoring will be determined as part of an approved EMP in consultation with the City of London. Typical intervals include 1-, 3- or 5-years. The City will take on monitoring post assumption in intervals appropriate to the feature. Reporting of monitoring data including those for compensation sites shall be provided annually by the proponent for the duration of their responsible term.

The main focus of this phase of monitoring is to evaluate the performance and effectiveness of the mitigation implemented in the construction stage and to inform adaptive management and shifts in management and compensation strategies, if required.

Post-construction monitoring is critical to understanding if the mitigation and / or compensation measures are effective and / or if potential impacts are greater or lesser in magnitude than predicted during the impact assessment. Post-construction monitoring will also inform the need for adaptive management or amendments to the future monitoring plans based on the level of success of the mitigation measures.

Performance and effectiveness monitoring may be required based on mitigation measures for, but not limited to, the following:

- hydrogeological and hydrological processes (e.g., maintenance of pre-development groundwater levels and flows to watercourses, maintenance of water balance in wetlands)
- stormwater management measures (e.g., outlet water quality and erosion thresholds not exceeded)
- tree protection measures (e.g., protected trees remain in good health)
- natural feature encroachments (e.g., no dumping or informal trail creation within protected features)
- ecological functions of natural features (e.g., continued presence of amphibian species and / or forest bird species documented pre-development)
- successful naturalization of Ecological Buffers, and
- successful establishment and diversification of feature-based restoration and / or compensation.

Post-construction monitoring requires the submittal of annual reports to the City of London outlining seasonal changes in the existing conditions of the NHS, as well as to show changes year-over-year. Any major issues identified during the monitoring periods (e.g., substantive die-off of plantings) must be brought to the immediate attention of the City of London and the proponent. In general, the report may include, but is not limited to, the following:

- General methodology and description (e.g., vegetation communities, taxa specific) of monitoring;
- Outline of thresholds and the associated contingencies in place should they be exceeded;
- All data collected (i.e., baseline, during construction, and up-to-date post construction);
- Analysis and comparison of data; and,
- A plan for the maintenance, and if necessary, implementation of additional mitigation measures.

Post-construction monitoring should take place until end of the Assumption Development Stage and will shift to the post-development monitoring, as described in **Section 7.2.5.1**.

7.2.5.1 Post-Development Monitoring

Post-development monitoring is aimed at continuing to assess ecosystem resilience, to detect changes in the structure of NHS Features and Areas, and to assess the long-term efficacy of EIS recommendations (i.e., mitigation measures). The requirement for post-development monitoring, along with an outline of the roles and responsibilities, will be determined as part of an approved EMP (as outlined in **Section 2.6.6.9**) in

consultation with the City of London. The results of post-development monitoring will be analyzed based on timelines in the EIS. The results of post-development monitoring inform if additional remedial works are necessary or if policy changes are needed.

7.2.5.2 *Compensation Monitoring*

As outlined in **Section 6.3**, ecological compensation may be permitted where it is not possible to avoid, minimize, or mitigate potential negative impacts from development or infrastructure. The aim of compensation monitoring is to determine whether the ecological compensation has achieved no net loss, or preferably a net environmental benefit, in relation to the replaced or enhanced natural features and their associated function(s). The proposed compensation monitoring plan must be approved prior to the implementation of compensation measures.

Compensation monitoring should be initiated upon completion of the compensation project (e.g., planting, restoration has been completed) to ensure that baseline data is captured. It is expected that monitoring will continue until the compensation goals have been achieved and the conditions approved through the EIS process (i.e., Ecological Replacement and Compensation Plan) have been fulfilled (5-year timelines should be expected) **or** the lands have been transferred to the City of London and an agreement has been made to shift monitoring responsibilities. This close-out process for compensation monitoring must be approved in consultation with the City of London.

Although compensation monitoring plan details will vary on a case-by-case basis, the following are some general recommendations:

- Compensation monitoring should capture the baseline conditions and re-evaluate the efficacy of the compensation project at the 1, 3, and 5-year milestones. Should the compensation project not meet the goal of no net loss or, preferably net environmental benefit (or net positive effect) at the 5-year milestone, compensation monitoring will be required at 5-year intervals until no net loss at minimum is achieved. This timeline may span pre-, during, and post-construction as it is recommended that compensation projects be initiated as early as possible to minimize lag time of replacing natural features and their function(s);
- Survivorship thresholds expectations should be set, with a 70% success rate being recommended as a baseline (NVCA, 2019);
- Monitoring data should be transferred to the City of London for storage and to inform future compensation strategies (e.g., lessons learned);
- Reporting should occur at each milestone to outline the succession and survivorship within the replaced or enhanced feature to assess the project's trajectory towards no net loss or, preferably net environmental benefit (or net positive effect). Where projects are not functioning as designed and approved (e.g. expected outcomes not observed, low survivorship of plantings), as defined through the Ecological Replacement and Compensation Plan, and with consideration for the most up-to-date research, interventions and modifications to the project will be required to ensure that the project achieves, at minimum, no net loss; and,

The City of London will provide direction on the success of the implementation of the EIS recommendations resulting in one of three outcomes; 1) do nothing, 2) remedial works identified, or, 3) policy changes identified.

8. Glossary of Terms

Important note: There are a wide range of terms defined in this glossary from a wide range of sources. Not all defined terms are capitalized in the EMG so as not to interrupt the flow of the text. Only those terms capitalized in this Glossary are capitalized in the body of EMG. These are largely terms directly related to the identification of the Natural Heritage System in London or proper names.

adaptive management - A planned and systematic process for continuously improving environmental management practices by learning about their outcomes. Adaptive management provides flexibility to identify and implement new mitigation measures or to modify existing ones during the life of a project (Canadian Environmental Assessment Agency, 2016).

adjacent lands – Those lands within a set or specified distance of an individual component of the Natural Heritage System. Adjacent lands are defined as lands contiguous to a specific NHS Feature or Area where it is likely that development or site alteration would have a negative impact on the feature or area. The extent of the adjacent lands will be in conformity with the distances identified in Table 13 of *The London Plan* or as recommended by the Province (City of London, 2019).

area-sensitive species - Those that require a forest to be a given size (generally a relatively extensive habitat patch) to successfully reproduce or occur in higher densities (Sandilands, 1997)

area(s) of interference – Those lands where development activity, interference, or change to a wetland, could interfere with the hydrologic functions of a wetland (Source: Conservation Ontario, 2024).

Areas of Natural and Scientific Interest (ANSI) – “Areas of land and water containing natural landscapes or features that have been identified as having life science or earth science values related to protection, scientific study or education” (MMAH, 2024).

assumption development stage - The developer has satisfied all parts of the development or infrastructure agreement, and the assumption has been granted.

baseline conditions – Baseline conditions may also be referred to as the environmental setting, existing conditions, and other similar terms. The baseline conditions are the physical, chemical, biological, social, economic, and cultural setting in which the proposed project is to be located, and where local impacts (both positive and negative) might be expected to occur. These conditions are the standard against which are compared projected future conditions from project alternatives. Their description and characterization are necessary for decision-makers, reviewers, and others who are unfamiliar with the project site and surrounding landscape (Shepard, 2006).

biodiversity - The variability among organisms from all sources, including terrestrial, marine and other aquatic ecosystems, and the ecological complexes of which they are part; this includes diversity within species, between species and of ecosystems. (MNRF, 2010b).

Carolinian Zone - The Carolinian Zone is also known as ecological site region (Ecoregion) 7E. It covers approximately 22,000 km² in extreme southern Ontario, extending northeast from the United States border to Toronto, and northwest to Grand Bend on Lake Huron. It is bounded by four major lakes (Huron, St. Clair, Erie and Ontario), and the St. Clair, Detroit and Niagara rivers. Climatically and biophysically it shares more with the “*hot continental (broadleaved forests)*” of the north-central United States than with the “*warm continental (mixed deciduous-coniferous forests)*” division farther north. It has been described as Canada’s most endangered major ecosystem, and many of its flora and fauna are found nowhere else in the nation. This is largely because many southern species are at their northern limits here, and because most of their natural habitat has been lost to human uses over the past three centuries. (Jalava et al., 2000).

coefficient of conservatism (for Southern Ontario) – “*A numeric value between 0 (widespread) and 10 (found only in specialized habitats) assigned to each plant species indicating the degree of faithfulness a plant displays to a specific habitat or set of environmental conditions. “Conservative” plant species, such as those that are found only in relatively pristine natural habitats like bogs or prairies, are assigned a high coefficient of conservatism; other plant species that grow in a wide variety of habitats and can tolerate high levels of cultural disturbance are assigned low values. By compiling a plant species list for a natural area and looking up the coefficients of conservatism for each species listed, one can calculate a Floristic Quality Index, which can be used to compare the quality of natural areas. The NHIC has produced a list of native plants occurring in southern Ontario, and has assigned tentative coefficients of conservatism to each*” (MNRF, 2010b).

complexity –as it relates to habitats, is the number of species in the ecosystem and their relative abundances. Ecological communities and ecosystems are good examples of complex systems. They comprise large numbers of interacting entities, on many scales of observation, and their dynamics are often non-linear (causes are not proportional to consequences) – this leads to unpredictability and even apparent randomness.

compliance monitoring –Entails monitoring of the NHS components as needed to ensure that the approved recommendations in the EIS, along with any other applicable conditions, are met during the construction phase.

conservation status ranks – *Standard methods to evaluate species and plant communities and assign conservation status ranks* (MNRF, 2020).

global rank (GRank) - *Conservation status of a species or plant community across its entire range* (MNRF, 2020).

national rank (NRank) - *Conservation status of a species or plant community within a particular country* (MNRF, 2020).

subnational rank (SRank) – *Conservation status of a species or plant community within a particular province, territory or state* (MNRF, 2020).

Critical Function Zone (CFZ) – “The term Critical Function Zone (CFZ) describes non-wetland areas within which biophysical functions or attributes directly related to the wetland occur. This could, for example, be adjacent upland grassland nesting habitat for waterfowl (that use the wetland to raise their broods). The CFZ could also encompass upland nesting habitat for turtles that otherwise occupy the wetland, foraging areas for frogs and dragonflies, or nesting habitat for birds that straddle the wetland-upland ecozone (e.g., Yellow Warbler). Effectively, the CFZ is a functional extension of the wetland into the upland. It is not a buffer for the wetland” (Environment Canada, 2013).

critical habitat - Under the federal *Species at Risk Act* (SARA), critical habitat is the habitat that is necessary for the survival or recovery of listed extirpated, endangered, or threatened species, and that is identified in a recovery strategy or action plan.

cultural communities – Vegetation communities originating from, or maintained by, anthropogenic influences and / or culturally based disturbances (such as agricultural fields (croplands) and pastures (grazing), mowing, woodlot management or tree cutting, etc.,) often containing a large proportion of introduced species (adapted from Lee *et al.*, 1998), but undergoing natural succession. Cultural communities include, but are not limited to, cultural meadows, cultural thickets, cultural savannahs, cultural woodland, and cultural plantation ecosites (Lee *et al.*, 1998).

cultural savannahs and cultural woodlands - A treed cultural community (defined above). It does not include treed areas where the main stratum is dominated by native species and tree cover is >60%. Cultural savannahs are treed areas with 125-35% scattered or clumped tree cover and dominated by graminoids and forbs. Cultural woodlands have 36-60% scattered or clumped tree cover (Lee *et al.*, 1998).

cumulative effects – “The sum of all individual effects occurring over space and time, including those that will occur in the foreseeable future” (MNRF, 2010b).

development – “The creation of a new lot, change in land use, or the construction of buildings and structures requiring approval under the *Planning Act*, but does not include:

- a) activities that create or maintain infrastructure authorized under an environmental assessment process or identified in provincial standards; or;
- b) works under the *Drainage Act*; or
- c) for the purposes of policy 4.1.4.a), underground or surface mining of minerals or advanced exploration on mining lands in significant areas of mineral potential in Ecoregion 5E, where advanced exploration has the same meaning as under the *Mining Act*. Instead, those matters shall be subject to policy 4.1.5.a” (MMAH, 2024).

(Note: *Provincial Planning Statement* 2024 policies 4.1.4.a) and 4.1.5 a) relate to significant wetlands).

disturbance - Any action that will cause an **effect** or **stress**; can be natural (e.g. fire, flood) or human –generated (e.g. various forms of development activity or agricultural uses).

drip line – “As the location on the ground beneath the theoretical line of the outer most branches of the trees at the edge of a woodland” (City of London, 2018). “Where an asymmetric tree canopy occurs, the drip line shall be the greatest of the drip line distances measured horizontally from the base of the trunk” (City of London, 2016b).

ecological boundary – Is determined based on ecological principles, refined through the application of **Section 4** Boundary Delineation in these Environmental Management Guidelines, and are irrespective of property lines.

Ecological Buffer – “An area or band of permanent vegetation, preferably consisting of native species, located adjacent to a natural heritage feature and usually bordering lands that are subject to development or site alteration. The purpose of the buffer is to protect the feature and its functions by mitigating impacts of the proposed land use and allowing an area for edge phenomena to continue (e.g., allowing space for edge trees and limbs to fall without damaging personal property, area for roots of edge trees to persist, area for cats to hunt without intruding into the feature). The buffer may also provide area for recreational trails and provides a physical separation from new development that will discourage encroachment” (MNRF, 2010b).

ecological compensation – Ecological compensation is an example of a trade-off whereby loss of natural values is remedied or offset by a corresponding compensatory action on the same site or elsewhere (Brown *et al.*, 2013). Ecological compensation is a positive conservation action that is required to counter-balance ecological values lost in the context of development or resource use and is an intentional form of trade-off (Morrison-Saunders and Pope, 2013).

ecological function – “The natural processes, products, or services that living and non-living environments provide or perform within or between species, ecosystems and landscapes. These may include biological, physical and socio-economic interactions” (MMAH, 2024).

ecological integrity – “The condition of an ecosystem in which (a) the structure, composition and function are unimpaired by stresses from human activity, (b) natural ecological processes are intact and self-sustaining and (c) ecosystem evolution is occurring naturally. Ecological integrity includes hydrological integrity” (MNRF, 2010b).

1. The ability of a system to resist disturbance (resistance).
2. The ability of a system to recover or return to a balanced state when subject to some degree of perturbations and disturbance (resilience).
3. The ability to persist in the long-term with the minimum level of human maintenance.
4. The ability to maintain a structure of native flora and fauna.

Ecologist – means a professional who has gained recognized certifications, qualifications and expertise in the field of Ecology including a bachelor's degree in biology or in a related discipline is required for biologists and / or a master's or doctoral degree in biology or a related discipline (adapted from the Government of Canada Job Bank website for “Ecologist in Ontario”).

edge effects – The distance from the periphery (of a given natural feature) to the point where conditions (as indicated by specific criteria) do not differ from those in the interior habitat (adapted from Environmental Law Institute 2003). “*Edge effects are known to edge effects vary depending on natural feature type, position in the landscape and other factors... With respect to biological effects, 100 metres is probably a conservative estimate of the extent of edge effects*”. (MNRF, 2010b).

edge microclimate - Sun and wind are the overriding controls of the edge microclimate. They determine which plants survive and thrive as well as having a major impact on soil, insects and other animals.

- Effects from south-facing edges tend to extend further into the feature than from north-facing edges.
- Effects from windward edges tend to extend further into the feature than from leeward edges.

ELC (Ecological Land Classification) community series - Is the lowest level of classification using ELC that can be identified through maps, air-photo interpretation and other remote sensing techniques. Community series are distinguished on the type of vegetation cover (open, shrub, or treed) and / or the plant form that characterizes the community (i.e., deciduous, coniferous, mixed; Lee et al., 1998).

ELC ecosite – Part of Community Series having a relatively uniform parent material, soil, and hydrology, and a chronosequence of vegetation. It is a mappable, landscape unit integrating a consistent set of environmental factors and vegetation characteristics (e.g., Dry-Forest Deciduous Forest Ecosite) (Lee et al., 1998).

ELC vegetation type - Is the finest level of resolution in the ELC, identified through site and stand level research and inventory. Vegetation types are generated by grouping similar plant communities based on plant species composition and dominance, according to relative cover. The goal is to distill the natural diversity and variability of plant communities to a small number of relatively uniform vegetation units (Lee et al., 1998).

encroachment – Encroachment(s) into protected NHS Features and Areas can occur from other land uses in the adjacent lands. Common examples of encroachment include dumping garden refuse in the natural area, creating unauthorized access (e.g., an informal trail), extending lawn management and manicuring into the natural area, and building structures (such as forts or bike jumps). Encroachment is usually more pronounced where the limit between the protected NHS Feature and / or Area and the adjacent land use is not fenced.

enhancement – From an ecological perspective, whereby the quality of ecosystem functions are improved. Enhancement can occur within or adjacent to a feature, and is a term that can apply to a natural feature or to the NHS as a whole. An example of ecological enhancement within a feature is removal of invasive plant species and related replacement with suitable native species. An example of an enhancement to the NHS is the naturalization of a maintained lawn between two features to provide a more natural corridor or ecological linkage.

environmental studies – In the City of London, these include Conservation Master

Plans, Secondary Plans, Environmental Impact Studies (EIS), Subject Lands Status Reports (SLSR), hydrogeological studies, Environmental Management Plans (EMP) and Environmental Assessments (EA) (see *The London Plan Policies 1309_* and *1380_*). See also “Natural heritage studies”.

feature – Means natural or cultural vegetation communities as defined under the ELC system for southern Ontario (Lee *et al.*, 1998) that meet the criteria for woodland feature (defined below), wetland feature (defined below), valleyland feature or wildlife habitat feature (defined below). May include one or more ELC Community Series, Ecosites and/or Vegetation Types. May qualify as one or more NHS Feature or Area (defined below) and may or may not be captured by Map 5 in *The London Plan*.

feature clusters – Means areas of more than one woodland feature, wetland feature, valleyland feature and / or wildlife habitat feature with natural cover that is contiguous and not separated by gaps of more than 40 m (e.g., by major roads, highways, urban development).

Fish Habitat – As defined in the *Fisheries Act*, means “*water frequented by fish and any other areas on which fish depend directly or indirectly to carry out their life processes, including spawning grounds and nursery, rearing, food supply, and migration areas*” (MMAH, 2024).

forest - A *terrestrial vegetation community with at least 60% tree cover* (Lee *et al.*, 1998) of coniferous and / or deciduous trees.

forest interior species - Are those that nest only within the interior of forests and rarely occur near the edge (Freemark and Collin, 1992). Note “interior” is typically identified as habitat more than 100 m from the forest edge (MNRF, 2010b).

fragmentation – For habitats, means the number of blocks that a given amount of habitat is divided into and is usually a landscape-scale process involving both habitat loss and the breaking apart of habitat (Fahrig, 2003).

groundwater feature – *Means water-related features in the earth’s subsurface, including recharge/discharge areas, water tables, aquifers and unsaturated zones that can be defined by surface and subsurface hydrogeologic investigations* (MMAH, 2024).

discharge areas – Discharge areas are usually located in valleys and lowlands. There the hydraulic gradients are directed upward toward the land surface. Discharging groundwater re-enters the surface-water regime as inflow to lakes or baseflow to streams, or to become evapotranspiration from wetlands (Council of Canadian Academies, 2009).

recharge areas – Recharge usually occurs in topographically higher areas of a groundwater basin. Water-table elevations tend to be a subdued reflection of surface topography, and the differences in water table elevation provide the driving force that moves groundwater by gravitational flow from recharge areas toward discharge areas at lower elevations. In recharge areas, the hydraulic gradient at the water table is directed downward, and recharging waters enter the groundwater-flow system to begin their slow journey through the groundwater basin (Council of Canadian Academies, 2009). In the context of Significant Woodland evaluation Criterion 1.1.A for the City of London, groundwater and

surface water baseflow contributions need to be demonstrated to consider this function significant given the City's requirement for water balances.

Headwater Drainage Feature (HDF) – Means “non-permanently flowing drainage features that may not have defined bed or banks; they are first-order and zero-order intermittent and ephemeral channels, swales and connected headwater wetlands, but do not include rills or furrows (TRCA and CVC, 2014).

hibernacula – (singular = hibernaculum) Underground chamber whereby snakes are able to safety overwinter. Hibernaculum can be a built structure or naturally occurring, i.e., animal burrow or fissure in the bedrock (Long Point Basin Land Trust, 2020).

high-water mark - The average **highest** level that a watercourse or waterbody rises to and remains at long enough to alter the riparian vegetation (DFO, 2007; DFO, 2019).

inclusions – Means cultural meadow or cultural thicket vegetation communities identified using the ELC system (Lee et al., 1998) that are generally smaller than 0.5 ha and surrounded on at least three sides by a woodland or wetland feature and may add ecological diversity and/or function. Examples include a small (e.g., 0.2 ha) cultural meadow community within a 4 hectare woodland.

indicator species – Species used which offer an indication of the biological condition in an ecosystem (MNRF, 2011b).

invasive species – Means an organism that is not native to the place where found and tends to grow and spread aggressively, usually to the detriment of native species and ecosystems.

interior habitat - With respect to woodlands, interior habitat is usually determined as habitat 100 metres or more from the outer edge of the woodland. These interior habitats provide productive habitat for sensitive species that are sheltered from external influences and disturbance (MNRF, 2010b).

landform - Is a topographic feature. The various slopes of the land surface resulting from a variety of actions such as deposition or sedimentation, erosion and movements of the earth crust.

linkage - *Linear area intended to provide connectivity (at the regional or site level), supporting a complete range of community and ecosystem processes, enabling plants and animals to move between core areas and other larger areas of habitat over a period of generations. The terms are used interchangeably for planning purposes but may need to be distinguished for ecological or biological reasons (MNRF, 2010b).* Linkages can be naturally existing or restored linear landscape connections between two or more component of the NHS. In the City of London, from an ecological perspective, linkage functions can be supported by many of the NHS components. Also see the definition for Upland Corridors.

The functions provided by ecological linkages are informed by characteristics such as their width (i.e., appropriate to the scale of the phenomenon being addressed), length (e.g., a long corridor will generally need to be wider than a short one), quality (e.g., vegetative structure and composition), species diversity (e.g., low non-native plant indices), type of corridor use (e.g., species in which individuals pass directly between two areas in discrete events of brief duration; or species that need several days to

several generations to pass through), importance within the landscape (e.g., the last remaining natural connection between two features), as well as the functions being expected of the linkage. Corridor functions may include, but are not limited to avenues along which:

- wide-ranging animals can travel, migrate and meet mates;
- plants can propagate;
- genetic interchange can occur among native flora and fauna;
- populations can move in response to environmental changes and natural disasters;
- individuals can recolonize habitats from which populations have been locally extirpated (MNRF 2010b, Environment Canada, 2013).

Low Impact Development (LID) – Approach to land development that mimics the natural movement of water in order to manage stormwater (rainwater and urban runoff) close to where the rain falls. LID uses small, simple design techniques and landscape features that filter, infiltrate, store, evaporate, and detain rainwater and runoffs at the lot level (City of Hamilton, 2020).

mean coefficient of conservatism (MCC) - Is calculated from the conservatism coefficients of all native species in a natural feature or ELC polygon. MCC aids in measuring the overall quality of a site. The conservative coefficient describes the probability of finding a species in a particular habitat type or undisturbed habitat. Coefficients range from 0 (widespread) to 10 (found only in specialized habitats). See definition for Coefficient of Conservatism above.

mitigation – *The prevention, modification, or alleviation of impacts or actions on the natural environment and -.... the prevention of negative impacts. Mitigation also includes any action intended to enhance beneficial effects* (MNRF, 2010b).

native species – For the City of London, usually refers to species that occurred naturally in southwestern Ontario prior to European settlement. Where the status of a species is in question, the City will defer to the Natural Heritage Information Centre.

natural heritage features and areas - In the City of London, these are those features and areas identified in accordance with the *Provincial Planning Statement* and listed in *The London Plan* policies 1319 and 1320, 1385 and 1386. These include: Fish Habitat, Habitat of Endangered and Threatened Species, Provincially Significant Wetlands (PSW) and Wetlands, Significant Woodlands and Woodlands, Significant Valleylands, Significant Wildlife Habitat (SWH), Areas of Natural and Scientific Interest (ANSIs), Water Resource Systems, Environmentally Significant Areas (ESA), Upland Corridors, Naturalization areas, other lands as identified through an environmental study (including Ecological Buffers, Unevaluated Wetlands, Unevaluated Vegetation Patches, Valleylands, Potential Environmentally Significant Areas (ESA) and Other Vegetation Patches.

Natural Heritage System (NHS) – *“A system made up of natural heritage features and areas, and linkages intended to provide connectivity (at the regional or site level) and support natural processes which are necessary to maintain biological and geological*

diversity, natural functions, viable populations of indigenous species, and ecosystems. These systems can include natural heritage features and areas, federal and provincial parks and conservation reserves, other natural heritage features, lands that have been restored or have the potential to be restored to a natural state, areas that support hydrologic functions, and working landscapes that enable ecological functions to continue. The Province has a recommended approach for identifying natural heritage systems, but municipal approaches that achieve or exceed the same objective may also be used" (MMAH, 2024).

Natural Heritage System (NHS) Areas - In the City of London, these include Water Resource Systems, Environmentally Significant Areas (ESA), Upland Corridors, Naturalization areas and other lands as identified through an environmental study, including Ecological Buffers (as listed in *The London Plan* Policy 1319).

Natural Heritage System (NHS) Features - In the City of London, these include Fish Habitat, Habitat of Endangered and Threatened Species, Provincially Significant Wetlands (PSW) and Wetlands, Significant Woodlands and Woodlands, Significant Valleylands, Significant Wildlife Habitat (SWH) and Areas of Natural and Scientific Interest (ANSIs) (as listed in *The London Plan* Policy 1319).

natural landform-vegetation communities - Areas of vegetation associated with landform types (e.g., ravine, floodplain, tableland). The communities should represent typical pre-settlement vegetation conditions. For example: Yellow Birch deciduous swamp type on floodplain; or fresh Hemlock coniferous forest type on steep slope/ravine.

negative impacts – is defined in accordance with the *Provincial Planning Statement* and includes policy references from that document, as follows:

- a) "in regard to policy 1.6.6.4 and 1.6.6.5, potential risks to human health and safety and degradation to the quality and quantity of water, sensitive surface water features and sensitive ground water features, and their related hydrologic functions, due to single, multiple or successive development. Negative impacts should be assessed through environmental studies including hydrogeological or water quality impact assessments, in accordance with provincial standards;
- b) in regard to fish habitat, any harmful alteration, disruption or destruction of fish habitat, except where an exemption to the prohibition has been authorized under the *Fisheries Act*;
- c) in regard to other natural heritage features and areas, degradation that threatens the health and integrity of the natural features or ecological functions for which an area is identified due to single, multiple or successive development or site alteration activities.
- d) in regard to policy 4.2, degradation to the quality and quantity of water, sensitive surface water features and sensitive ground water features, and their related hydrologic functions, due to single, multiple or successive development or site alteration activities; and
- e) in regard to policy 3.3.3, any development or site alteration that would compromise or conflict with the planned or existing function, capacity to accommodate future needs, and cost of implementation of the corridor." (MMAH, 2024)

net effects - Those impacts that remain after mitigation has been implemented.

non-native species - Used to refer to a species that did not originate naturally in an area. Usually refers to species that have been introduced to southwestern Ontario since European settlement. Where the status of a species is in question, the City will defer to the Natural Heritage Information Centre.

Overall Benefit Permit – Issued under the *Endangered Species Act* in which “authorizes a person, company or organization to perform the activity, as long as an overall benefit to the species is realized” (MECP, 2020). The person, company or organization must undertake “actions that contribute to improving the circumstances to the species” (MECP, 2020).

Other Vegetation Patches – Are areas of naturalized vegetation larger than 0.5 ha which have not been evaluated or included on Map 5 of *The London Plan* and, where appropriate, require evaluation to determine their significance in accordance with *London Plan* Policies 1385 and 1386. Also, see “Unevaluated Vegetation Patch”.

Place Type (The London Plan) - Traditionally, Planners have focused on land use when setting plans for geographic areas within a city – often referred to as a “land use designation”. *The London Plan* takes a different approach by planning for the type of place that is envisioned – what this Plan refers to as a “Place Type”. It seeks to plan highly functional, connected, and desirable places. Most place types support a range of intensities and a mix of land uses (City of London, 2019).

Environmental Review - 779 *In some cases, lands may contain natural heritage features and areas that have not been adequately assessed to determine whether they are significant and worthy of protection as part of the City's NHS. The Environmental Review Place Type will ensure that development which may negatively impact the value of these features does not occur until such time as the required environmental studies are completed.* 780 *In addition to the components of the NHS which have been evaluated and shown as Green Space on Map 1 – Place Types in conformity with the policies of this Plan, additional lands are identified on Map 5 – Natural Heritage, that may contain significant natural features and areas and important ecological functions which should be protected until environmental studies have been completed, reviewed, and accepted by the City. These potential components of the NHS, shown within the Environmental Review Place Type on Map 1, will be protected from activities that would diminish their functions pending the completion, review and acceptance of a detailed environmental study* (City of London 2019).

Green Space - 757 *The Green Space Place Type is made up of a system of public parks and recreational areas, private open spaces, and our most cherished natural areas. It encompasses a linear corridor along the Thames River, which represents the natural heritage and recreational spine of our city. It also encompasses our hazard lands, including our valleylands and ravines, and the floodplains associated with our river system.* 758 *The Green Space Place Type is comprised of public and private lands; flood plain lands; lands susceptible to erosion and unstable slopes; natural heritage features and areas recognized by City Council as having city-wide, regional, or provincial significance; lands that contribute to important ecological functions; and lands*

containing other natural physical features which are desirable for green space use or preservation in a natural state. The components of the NHS that are included in the Green Space Place Type on Map 1 – Place Types, are identified or delineated on Map 5 - Natural Heritage. Hazard lands and natural resource lands that are included in the Green Space Place Type on Map 1 are identified or delineated on Map 6 – Hazards and Natural Resources (City of London, 2019).

plantation - A coniferous or deciduous treed community in which the majority of trees have been planted (Lee et al., 1998).

Potential Naturalization Area - Potential naturalization areas are defined as areas where the opportunity exists to enhance, restore, or where appropriate, expand the NHS. These areas may include lands suitable to create natural habitats such as wetland habitat, pollinator habitat, wildlife habitat, or to compensate for trees lost to development. (The London Plan Policy 1378). Potential naturalization areas are an important component of the Natural Heritage System. Potential naturalization areas can include lands adjacent to natural heritage features and areas, other natural features, lands that have been restored or have the potential to be restored to a natural state, areas that support hydrologic functions, and working landscapes that enable ecological functions to continue. Potential naturalization areas may enhance, restore or strengthen and expand the health and viability of a natural heritage feature or area (The London Plan Policy 1379).

prairie - An area of native grassland controlled by a combination of moisture deficiency and fire. Usually containing a distinctive assemblage of species. May include tallgrass prairie, tallgrass savannah or tallgrass woodland upland communities (Lee et al., 1998).

Provincially Significant Wetland (PSW) – see “**Significant**” in this Glossary

Rare Plant Species – List of species that can be grouped but not limited to the following:

provincially rare plants - includes species with an element ranking of S1-S3 (For a complete listing of Ontario's rare plant species consult NHIC at www.mnr.gov.on.ca/MNR/nhic/nhic.html).

regionally rare plants - includes species with 1 to 4 stations (records) in Middlesex County (as per the *List of the Vascular Plants of Ontario's Carolinian Zone (Ecoregion 7E)*, Oldham, 2017).

regionally uncommon plants - Native in the Carolinian Zone and (a) listed as common in no more than one Carolinian Zone area; and (b) not rare or historic in more than half of the Carolinian Zone areas (≥ 6) in which it is native and ranked (i.e. not X (no Status)) (as per the *List of the Vascular Plants of Ontario's Carolinian Zone (Ecoregion 7E)*, Oldham, 2017) or comparable successor lists.

relative abundance – is the proportion of coverage a particular plant species, vegetation layer or plant form represents:

- **rare** - a plant species that is represented, in the area of interest, by only one to a few individuals.

- **occasional** – plants that are present as scattered individuals throughout a community or represented by one or more large clumps of many individuals. Most species will fall into this category.
- **abundant** – a plant that is represented throughout the community by large numbers or individuals or clumps. Likely to be encountered anywhere in the community; usually forming > 10% ground cover.
- **dominant** – a plant with the greatest cover or biomass within a plant community and represented throughout the community by large numbers of individuals. Visually more abundant than other species in the same layer and forming > 10% of the ground cover and >35% of the vegetation cover and > 35% of the vegetation cover in any one layer.

restoration – From an ecological perspective, “*is the process of assisting the recovery of an ecosystem that has been degraded, damaged, or destroyed*” (Society for Ecological Restoration website).

satellite woodlands - Are woodland features less than 2 ha located within 100 m of a larger area of Significant Woodland. The satellite may be part of a another natural feature or feature cluster.

setback - A land use planning term, established through the use of zoning standards, generally providing for minimum distances from lot lines to achieve appropriate locations for buildings and structures (MNRF, 2010b; Beacon, 2012). Within the City of London “*setbacks shall apply from any lands identified as an ecological buffer*” (City of London, 2019).

Significant - As defined by the *Provincial Planning Statement* means:

- a) Provincially Significant Wetland (PSW) and Significant Area of Natural and Scientific Interest (ANSI): “*in regard to wetlands, coastal wetlands and areas of natural and scientific interest, an area identified as provincially significant by the Ontario MNRF using evaluation procedures established by the Province, as amended from time to time*” (MMAH, 2024);
- b) Significant Woodland: “*in regard to woodlands, an area which is ecologically important in terms of features such as species composition, age of trees and stand history; functionally important due to its contribution to the broader landscape because of its location, size or due to the amount of forest cover in the planning area; or economically important due to site quality, species composition, or past management history*” (MMAH, 2024);

In the City of London, the woodland feature will be considered significant if it achieves a minimum of one high or five medium criteria scores as determined by the application of the technical guidelines in these EMG” (*The London Plan Policy 1340*).

The significance of woodlands will be based on the evaluation of the following five criteria as outlined in **Section 3.2.1** of these EMG (*The London Plan Policy 1341*):

1. The woodland feature contains natural features and ecological functions that are important to the environmental quality and integrity of the Natural Heritage System. These include site protection (hydrology and erosion/slope) and landscape integrity (richness, connectivity and distribution).
2. The woodland feature provides important ecological functions and has an age, size, site quality, diversity of biological communities and associated species that is uncommon for the planning area.
3. The woodland feature is important for the provision of a balanced distribution of open space amenities and passive recreational opportunities across the urban area.
4. The woodland feature provides significant habitat for Species at Risk.
5. The woodland feature contains distinctive, unusual or high-quality natural communities or landforms.

c) Significant Valleylands and Significant Wildlife Habitat (SWH): “*in regard to other features and areas . . . , ecologically important in terms of features, functions, representation or amount, and contributing to the quality and diversity of an identifiable geographic area or natural heritage system; . . . Criteria for determining significance . . . are provided in provincial guidance, but municipal approaches that achieve or exceed the same objective may also be used.*

While some significant resources may already be identified and inventoried by official sources, the significance of others can only be determined after evaluation” (MMAH, 2024).

site alteration – “*Activities, such as grading, excavation and the placement of fill that would change the landform and natural vegetative characteristics of a site*” (MMAH, 2024).

species richness - The number of different species within a community (Pyron, 2010).

Species at Risk (SAR) - Used to describe species that are listed in one of the conservation categories of “endangered”, “threatened” or “special concern”

Endangered – Any native species that on the basis of the best available scientific evidence, is at risk of extinction or extirpation throughout all or a significant portion of its (Ontario) range; a species threatened with imminent extinction or extirpation (COSEWIC) and protected under the Ontario Endangered Species Act.

Threatened - Any native species that, on the basis of the best available scientific evidence, is at risk of becoming endangered throughout all or a significant portion of its (Ontario) range (COSSARO); a species likely to become endangered if the limiting factors are not reversed (COSEWIC) and protected under the Ontario Endangered Species Act.

Special Concern - Any native species that, on the basis of the best available scientific evidence, is a species of special concern (in Ontario), but is not a threatened or endangered (COSSARO); a SAR because of low or declining

numbers, small range or because of characteristics that make it particularly sensitive to human activities or to natural events (COSEWIC).

stormwater management – The plans, public works and initiatives put in place to maintain quality and quantity of stormwater runoff to pre-development levels (City of London, 2019).

successional / seral age - The stage in a vegetation chronosequence or succession at a given site.

climax vegetation communities - Are self-perpetuating and composed of climax species. A successional stage with unevenly aged and multiple height classes (Strong *et al.*, 1990).

early successional vegetation communities - Have not undergone a series of natural thinning. Dominant plants are essentially growing as independent individuals, rather than as members of a phytosociological community. It is floristically similar to mid-successional stands, but is juvenile in structural development (Strong *et al.*, 1990).

mid-aged vegetation communities - A seral stage of a community that has undergone natural thinning and replacement as a result of species interaction; the community often contains examples of both early successional and late successional species. Mid-successional communities have undergone natural thinning as a result of species interaction, and may show evidence of invasion by climax species, but they are still dominated by seral species. They may include stands with an over mature understorey (Strong *et al.*, 1990).

Mature vegetation communities - A seral stage in which a community is dominated primarily by species that are replacing themselves and are likely to remain an important component of the community if it is not disturbed again. Significant remnants of early seral stages may still be present. Mature Forests are dominated primarily by species which are replacing themselves and are likely to remain an important component of the community if it is not disturbed again. Significant remains of early seral stages may still be present (Lee *et al.*, 1998).

older growth forests - relatively old and relatively undisturbed by humans. The definition of older growth considers factors other than age, including forest type, forest structure, forest development and the historical and current patterns of human disturbance. Older growth forests are self-perpetuating communities composed primarily of late seral species which show uneven stand age distribution including large old trees without open-grown characteristics (Lee *et al.*, 1998).

pioneer vegetation communities - A community that has invaded disturbed or newly created sites and represents the early stages of either primary or secondary succession. Pioneer communities have invaded disturbed or newly created sites, and represent the early stages of either primary or secondary succession (Strong *et al.*, 1990).

sub-climax vegetation communities - Are successional maturing communities dominated primarily by climax species, but significant remnants of earlier seral stages may be present (Strong *et al.*, 1990).

young vegetation communities - A seral stage of a plant community that has not yet undergone a series of natural thinning and replacements. Plants are essentially growing as independent individuals rather than as members of a phytosociological community.

surface water feature – “Means water-related features on the earth’s surface, including headwaters, rivers, permanent and intermittent streams, inland lakes, seepage areas, recharge/discharge areas, springs, wetlands, and associated riparian lands that can be defined by their soil moisture, soil type, vegetation or topographic characteristics” (MMAH, 2024).

thicket – A vegetation type that is characterized by ≤25% tree cover and >25% tall shrub cover (Lee *et al.*, 1998).

thicket swamp - A wetland vegetation type that is characterized by < 10% tree cover and > 25% tall shrub cover” (shrubs defined by Soper and Heimburger, 1982) (Lee *et al.*, 1998).

top-of-slope - The intersection of the physical top of a bank or valley slope with the table land. This can be different than the geotechnical or engineered stable top-of-slope. For well-defined valleys, the physical boundary is generally defined by the stable or the predicted top-of-slope while “*for a less well-defined valley or stream corridor, the physical boundary may be defined in a number of ways, including the consideration of riparian vegetation, the flooding hazard limit, the meander belt or the highest general level of seasonal inundation*” (MNRF, 2010b).

tree canopy – An almost continuous layer of foliage formed by the crowns of the larger trees. Shades the layers of vegetation below (CVC, 2011).

Unevaluated Vegetation Patches – Identified through subwatershed plans or other environmental studies in and for the City of London and mapped on Map 5 of ***The London Plan***. Unevaluated Vegetation Patches “*may include treed areas, swamps, wetlands, savannahs, old field plantations, or other similar natural features*” (*The London Plan* policy 1383_) and must be assessed to determine if they meet the criteria for one or more of the City’s NHS components, as listed in ***The London Plan*** Policy 1319. Also, see “Other Vegetation Patches”.

Unevaluated Natural Heritage Features and Areas - In the City of London, these include Unevaluated Wetlands, Unevaluated Vegetation Patches, Valleylands and Potential Environmentally Significant Areas (ESA) (as listed in ***The London Plan*** Policy 1320) as well as Other Vegetation Patches (defined above).

Unevaluated Wetlands – Wetlands that have not undergone the OWES evaluation process.

Upland Corridors - *Vegetated areas, or potentially revegetated areas, that provide a link between natural heritage features and areas of the Natural Heritage System. Upland corridors may incorporate infrastructure (such as culverts or underpasses) to support connectivity (The London Plan Policy 1372). Upland corridors support and*

connect valleylands to natural heritage features and areas where the valleylands do not directly connect. Valleylands are also essential for establishing connectivity for the Natural Heritage System, and they provide corridor and linkage functions between natural heritage features and areas. Both are essential in a highly fragmented or urban landscape (The London Plan Policy 1374). Upland corridors are “to retain or create linkages between isolated natural areas” (The London Plan Policy 1417_g).

urban growth boundary – “The boundary shown on Map 1 and Figure 1, beyond which urban uses will not be permitted. Generally, this map boundary separates the urban parts of our city from the rural parts of our city” (City of London, 2019).

valleylands – “A natural area that occurs in a valley or other landform depression that has water flowing through or standing for some period of the year” (MMAH, 2024).

vascular plants – Have a specialized vascular systems known as the xylem and phloem (Leslie, 2018).

vernal pool – Pool fed by either groundwater (e.g., springs), snowmelt, or surface water that may be important breeding sites for [various species], which are generally found within a woodland or in proximity to a woodland (MNRF, 2010b).

watercourse - Is defined according to several federal and provincial Acts and Regulations and typically consists of a distinct (somewhat to well-defined) channel in which water naturally flows at some time of the year [i.e., permanent, intermittent, or ephemeral flow as defined by MNRF’s Stream Permanency Handbook for South-Central Ontario (MNRF, 2013b)]. This includes anthropogenically created / maintained / altered features as well as natural features.

watershed – *An area that is drained by a river and its tributaries* (City of London, 2019).

subwatershed - *Area drained by a stream or group of streams within the larger watershed. A subwatershed identifies streams, wetlands, forests, groundwater recharge, and other natural areas* (GRCA, 2020).

wetland feature – Means an “area of land that is saturated with water long enough to promote hydric soils or aquatic processes as indicated by poorly drained soils, hydrophytic vegetation and various kinds of biological activity that area adapted to wet environments. This includes shallow waters generally less than 2 m deep” (as per the ELC system for southern Ontario, Lee *et al.*, 1998). May include any natural or cultural wetland communities under the ELC system for southern Ontario (Lee *et al.*, 1998).

wetland plant species – Species that are found in wetlands in Ontario. Wetland plant species range from those species that occur primarily in wetlands (“wetland indicators”) to those species that occur in both wetlands and uplands (MNRF, 2022).

Emergent - Herbaceous plants which rise out of the water (MNRF, 2022).

Floating - Rooted, vascular hydrophytes with leaves floating horizontally on or just above the water surface (MNRF, 2022).

Submergent - Rooted hydrophytes with leaves entirely under the water surface (MNRF, 2022).

Wetlands – “Lands that are seasonally or permanently covered by shallow water, as well as lands where the water table is close to or at the surface. In either case the

presence of abundant water has caused the formation of hydric soils and has favoured the dominance of either hydrophytic plants or water tolerant plants. The four major types of wetlands are swamps, marshes, bogs and fens. Periodically soaked or wetlands being used for agricultural purposes which no longer exhibit wetland characteristics are not considered to be wetlands for the purposes of this definition" (MMAH, 2024).

Notably, wetlands are also defined under the *Conservation Authorities Act* and this definition may also be applicable.

In the City of London, Wetlands are those that are evaluated for significance that do not meet the criteria for designation as a PSW per OWES. Examples of wetlands include:

bog - Is defined as an open or treed wetland area on deep (>40cm) peat almost entirely composed of Sphagnum species. The tree cover is less than 25%, scattered or clumped, and usually under 10 m in height. The wetland is dominated by graminoids and / or low ericaceous shrubs (Riley, 1994 from Lee *et al.*, 1998).

fen - Is defined as an open or treed wetland area on deep (>40 cm) sedge and woody peat with a substantial component of brown moss. The tree cover is less than 25%, scattered or clumped. The wetland is dominated by graminoids and low non-ericaceous shrubs (Lee *et al.*, 1998). **Fens** may also include seepage marl areas with <40 cm peat, and / or the presence of fen indicator species.

marsh - Is defined as an open wetland area occurring on organic or mineral substrates with a water table that fluctuates seasonally or periodically at, near, or above the substrate surface; dominated by hydrophytic sedges, grasses, cattails, reeds, forbs or low shrubs with tree and tall shrub cover <25%; may include meadow marsh, shallow marsh, deep marsh or shrub marsh (Lee *et al.*, 1998).

swamp - A mineral-rich wetland community characterized by a cover of coniferous or deciduous trees (Lee *et al.*, 1998).

wildlife habitat feature – “*Areas where plants, animals and other organisms live, and find adequate amounts of food, water, shelter and space needed to sustain their populations. Specific wildlife habitats of concern may include areas where species concentrate at a vulnerable point in their annual or life cycle; and areas which are important to migratory or nonmigratory species*” (MMAH, 2024). May include any natural or cultural vegetation communities under the ELC system for southern Ontario (Lee *et al.*, 1998) listed in the Significant Wildlife Habitat Criteria Schedules for Ecoregion 7E (MNRF, 2015).

Woodland – In the City of London, the term Woodland (with a capital “W”) refers to a woodland feature that has been evaluated (based on the criteria and guidance in these EMG), and confirmed to be a non-Significant Woodland but was still identified for protection through the planning process and designated as part of the City’s NHS.

woodland feature - “*means treed areas that provide environmental and economic benefits to both the private landowner and the general public, such as erosion prevention, hydrological and nutrient cycling, provision of clean air and the long-term storage of carbon, provision of wildlife habitat, outdoor recreational opportunities, and the sustainable harvest of a wide range of woodland products. Woodlands include treed areas, woodlots or forested areas and vary in their level of significance at the local,*

regional and provincial levels" (MMAH, 2024 and *The London Plan 1337*_). In the City of London, these are natural areas greater than 0.5 ha that are classified using the Province's Ecological Land Classification (ELC) system (Lee et al., 1998) as treed, woodland or forest communities, including cultural plantations, cultural savannahs and cultural woodlands, and swamps (which are treed wetlands). In terms of tree cover, this means that "woodland features" shall include the following vegetation communities:

- ELC forest Community Series and plantations – which have at least 60% treed cover
- ELC woodland Community Series, including cultural woodlands – which have between 35% and 60% treed cover
- ELC swamp Community Series – which have at least 25% treed cover
- ELC savannah Community Series – which have between 25% and 35% treed cover, and
- Other "treed" ELC Community Series (e.g., Treed Rock Barren, Treed Fen) – which have at least 10% treed cover.

"but do not include a cultivated fruit or nut orchard or a plantation established for the purpose of producing Christmas trees." (*Ontario Forestry Act*, RSO 1990, F.26)

A woodland feature may be bisected or include gaps in natural cover if the gap is less than 20 m wide (e.g., a road, utility corridor).

Woodland features generally meeting the structural and compositional characteristics of any of the ELC Community Series listed above, but not meeting the tree cover thresholds due to anthropogenic and/or environmental impacts sustained over the past five (5) years (e.g., tree harvesting for personal use, removal of trees deemed high-risk due to severe pest infestation or damage caused by ice storm) are still considered woodland features.

In cases and/or areas where the City and proponents disagree on the extent and/or presence of a woodland feature, and where woodland regeneration is taking place and woodland cover is lower than the established thresholds, the *Ontario Forestry Act* (RSO 1990, F.26) definition of "woodlands" based on stem densities will prevail.

9. References

Adamus, P.R. (2007). Best Available Science for Wetlands of Island County, Washington: Review of Published Literature. A Report Prepared in Response to Critical Areas Ordinance. Updating Requirements for Wetlands.

Alani, A.M., and Lantini, L. (2020). Recent Advances in Tree Root Mapping and Assessment Using non-destructive testing methods: A focus on ground penetrating radar. *Surveys in Geophysics*: 41: 605-646

Bakowsky, W. (1997). Southern Ontario Vegetation Communities. Natural Heritage Information Centre.

Bakowsky, W., & Riley, J. L. (1993). A Survey of the Prairies and Savannas of Southern Ontario. Proceedings of the 13th North American Prairie Conference. Windsor.

Ballantyne, M. and C. M. Pickering. (2015). REVIEW: The impacts of trail infrastructure on vegetation and soils: Current literature and future directions. *J Environ Manage*. 164:53-64. Accessed at: <https://pubmed.ncbi.nlm.nih.gov/26342267/>

Beacon Environmental. (2009). Restoration and Securement Strategy for Enhancing the Town of East Gwillimbury Natural Heritage System. 87 pp. East Gwillimbury, Ontario, Canada: Town of East Gwillimbury.

Beacon Environmental. (2012, December). Ecological Buffer Guideline Review. Markham, Ontario, Canada: Credit Valley Conservation Authority.

Beacon Environmental. (2014). Environmental Impact Study Compliance Monitoring. London, Ontario, Canada: City of London.

Beak Consultants Ltd. (1995). Aquatic Resources Management Reports for Vision '96 Subwatersheds. Group 1, Groups 2/3, and Groups 4/5, London.

Bekessy, S., Wintle, B., Lindenmayer, D., McCarthy, M., Colyvan, M., Burgman, M., & Possingham, H. (2010). The biodiversity bank cannot be a lending bank. *Conservation Letters*, 3, 151-158.

Bergsma, B. (2004). City of London Process to Implement Policies and Develop Guidelines to Identify Ecologically Significant Woodlands. London.

Bettinger, P., Boston, K., Siry, J.P., & Grebner, D.L. (2016). Forest Management and Planning, Academic Press 2009, second edition December 2016.

Bibby, C. J., Burgess, N. D., Hill, D. A., & Mustoe, S. H. (2000). Bird Census Techniques (2nd Ed. ed.). Academic Press.

Birds Canada. (2020). Birds Canada Webpage. Canada. Retrieved from <https://www.birdscanada.org/>

BSC (Bird Studies Canada). (2009a). Marsh Monitoring Program Participant's Handbook for Surveying Amphibians. Bird Studies Canada in cooperation with Environment Canada and the U.S. Environmental Protection Agency.

BSC (Bird Studies Canada). (2009b). Marsh Monitoring Program Participant's Handbook for Surveying Marsh Birds.

Boutin, C., & Jobin, B. (1998). Intensity of agricultural practices and effects on adjacent habitats. *Ecological Applications*, 14(6), 1757-1765.

Bowles, J. (2002). Regionally Rare Plants of Middlesex County.

Bowles, J. M., Draper, W. B., Heagy, A., Kanter, M., & Larson, B. (1994). City of London Sub-Watershed Studies Life Science Inventories. London: City of London, Upper Thames River Conservation Authority.

Bowles, J., & Bergsma, B. (1999). Components of the Natural Heritage System Guidelines for the Evaluation of Patches.

Bowman, I. (1996). Species at Risk in Ontario - Report of the Rare, Threatened, and Endangered Task Force. Toronto: Ministry of Natural Resources and Forestry.

Bricker, B., & Reader, R. (1999). The effect of woodlot size on woody species composition richness. In G. M. Allen, P. F. Eagles, & S. D. Price, *Conserving Carolinian Canada: Conservation Biology in the Deciduous Forest Region* (pp. 75-87). Waterloo, Ontario, Canada: University of Waterloo Press.

Brosofske, K. D., Chen, J. Q., Naiman, R. J., & Franklin, J. F. (1997). Harvesting effects on microclimatic gradients from small streams to uplands in western Washington. *Ecological Applications*, 7, 1188-1200.

Brown, M. A., Clarkson, B. D., Barton, B. J., & Joshi, C. (2013). Ecological compensation: an evaluation of regulatory compliance in New Zealand. *Impact Assessment and Project Appraisal*, 31(1), 34-44.

Bull, J. W., Milner-Gulland, E. J., Suttle, K. B., & Singh, N. J. (2014). Comparing biodiversity offset calculation methods with a case study in Uzbekistan. *Biological Conservation*, 178, 2-10.

Bull, J., & Brownlie, S. (2017). The transition from No Net Loss to a Net Gain of biodiversity is far from trivial. *Oryx*, 51(1), 53-59.

Burke, D. M., & Nol, E. (1998). Edge and fragment size effects on the vegetation of deciduous forests in Ontario, Canada. *Natural Areas Journal*, 18, 45-53.

USDA Forest Service (2015). [Central Appalachians forest ecosystem vulnerability assessment and synthesis: a report from the Central Appalachians Climate Change Response Framework Project](#). Newton Square, Pennsylvania, USA: U.S. Department of Agriculture, Forest Service, Northern Region.

Burke, D., and E. Nol (1998). [Influence of Food Abundance, Nest-Site Habitat, and Forest Fragmentation of Breeding Ovenbirds](#). *Ornithology* 115(1):96-104.

Cadman, M. D., Dewar, H. J., & Welsh, D. A. (1998). The Ontario Forest Bird Monitoring Program (1987-1998): Goals, methods and species trends observed. Canadian Wildlife Service.

Canadensys. (2020). Database of Vascular Plants of Canada.

Canadian Environmental Assessment Agency. (2016). Report on Plans and Priorities. Pp. 36

Carter, T.R., Brunton, F.R., Clark, J.K., Fortner, L., Freckleton, C.N., Logan, C.E., Russell, H.A.J., Somers, M., Sutherland, L., Yeung, K.H. (2019). [A Three-Dimensional Geological Model of the Paleozoic Bedrock of Southern Ontario](#). Publication Np. GRS019, Geology Ontario.

Castelle, A. J., & Johnson, A. W. (2000). Riparian Vegetation Effectiveness. National Council for Improvement Technical Bulletin No. 799.

Castelle, A. J., Johnson, A. W., & Connelly, C. (1994). Wetland and stream buffer size requirements - A review. *Journal of Environmental Quality*, 23, 878-882.

Castelle, A.J., Connelly, C., Emers, M., Metz, E.E., Meyer, S., Witter, M., Mauermann, S., Erickson, T., and Cooke, S.S. (1992). Wetland Buffers: Use and Effectiveness. Adolfson Associates, Inc., Shorelands and Coastal Zone Management Program, Washington Department of Ecology, Olympia, Pub. No. 92-10.

Catling, P. (2013). Using Coefficients of Conservatism and the Floristic Quality Index to Assess the Potential for Serious and Irreversible Damage to Plant Communities. *Canadian Field Naturalist*, 127(3), 285-288.

Chapman, L. J., & Putnam, D. F. (1984). The Physiography of Southern Ontario. Special Volume 2(OGS Map P.2715), 3rd. Ontario, Canada: Ontario Geological Survey.

City of Cambridge. (2018). Cambridge Official Plan. Pp. 363

City of Guelph. (2018). Envision Guelph - The City of Guelph Official Plan. Guelph, Ontario, Canada.

City of Guelph. (2020). Guidelines for the preparation of Environmental Impact Studies. Version 2. Pp. 123

City of Hamilton. (2020). Low Impact Development (LID) – Stormwater Management. Retrieved from: <https://www.hamilton.ca/home-property-and-development/water-sewer/low-impact-development-lid-stormwater-management>

City of Hamilton and ESAIEG. (2015). Environmental Impact Statement (EIS) Guidelines. Hamilton, Ontario, Canada.

City of London. (1994). Guide to Plant Selection for Natural Heritage Areas and Buffers. London, Ontario, Canada: Council Approved March 22, 1994.

City of London. (2004). Guidelines for Determining Setbacks and Ecological Buffers. London, Ontario, Canada: Council Approved April 20, 2004.

City of London. (2007). City of London's Environmental Management Guidelines. London.

City of London. (2014). City of London Urban Forest Strategy. London.

City of London. (2016a). The London Plan. Official Plan, London.

City of London. (2016b). Tree Protection By-law. London, Ontario.

City of London. (2017). London Invasive Plant Management Strategy. 47 pp. London, Ontario, Canada.

City of London. (2018). Tree Planting and Protection Guidelines. In Design Specifications and Requirements Manual (p. 36 pp.). London, Ontario.

City of London. (2019). Design Specifications and Requirements Manual – 2003, Updated August 2019. London, Ontario: City of London - Environmental and Engineering Services.

City of London. (2020). Standard Contract Documents for Municipal Construction - 2020 Edition. London, Ontario: City of London - Environmental and Engineering Services.

City of Toronto. (2013). Natural Environment Trail Strategy. June 2013. 200 pp.

City of Waterloo. (2020). City of Waterloo Official Plan. Pp. 444

Conservation Ontario (2024). [Conservation Ontario Section 28 Committee: Interim Guidelines to Support Conservation Authority Administration of "Ontario Regulation 41/24".](#)

Couturier, A. (1999). Conservation Priorities for the Birds of Southern Ontario. Port Rowan: Bird Studies Canada.

Crins, W. J. (1996). Life Science Gap Analysis for Site District 4E-3. Ontario Ministry of Natural Resources.

de Foresta, H., Somarriba, E., Temu, A., Boulanger, D., Feuilly, H., & Gauthier, M. (2013). Towards the Assessment of Trees Outside Forests. Resources Assessment Working Paper 183.

DeWalle, D.R. (2010). Modeling Stream Shade: Riparian Buffer Height and Density as important as buffer width. Journal of the American Water Resources Association. Vol 46, No. 2

Dobbyn, J. S. (1994). Atlas of the Mammals of Ontario. Don Mills: Federation of Ontario Naturalists.

Dobson, M. (1995). Arboriculture Research and Information Note: Tree Root Systems. Arboricultural Advisory and Information Service

Dougan and Associates. (2020). CanPlant. Canada: Evergreen. Retrieved from <https://can-plant.ca/>

Dreimanis,A.. (1970). [Pleistocene geology of the St. Thomas area \(east half\), southern Ontario.](#) Preliminary Geology Map No. 606. Geology Ontario.

Dreimanis, A.(1964). [Pleistocene Geology of the St. Thomas Area \(west half\), southern Ontario. Preliminary Geological Map No. 238.](#) Geology Ontario.

Environment and Climate Change Canada. (1994). Migratory Birds Convention Act, 1994 SC. 1994, c.22. Canada.

Environment and Climate Change Canada. (2005). Beyond Islands of Green: A Primer for Using Conservation Science to Select and Design Community-based Nature Reserves. 80 pp. Downsview, Ontario, Canada.

Environment and Climate Change Canada. (2017). Annex A: Environment Canada Experience with Conservation Allowances. Operation Framework for Use of Conservation Allowances. Canada.

Environment Canada. (2002). Species at Risk Act, c. 29.

Environment Canada. (2012). Canadian Aquatic Biomonitoring Network Field Manual for Wadeable Streams. Science and Technology Branch. 51 pp. Dartmouth, NS.

Environment Canada. (2013). How Much Habitat is Enough? 3rd, 127 pp. Toronto.

Fahrig, L. (2003). Effects of Habitat Fragmentation on Biodiversity. *Annual Review of Ecology, Evolution, and Systematics* 34:487-515.

Fahrig, L. (2020). Why do several small patches hold more species than few large patches? *Global Ecology and Biogeography*, 29, 615-628.

Fisheries and Oceans Canada. (1985). Fisheries Act R.S.C., 1985, c. F-14. Canada.

Fisheries and Oceans Canada. (1994). Habitat Conservation and Protection Guidelines (First ed.).

Fisheries and Oceans Canada. (2007). Isolated or Dry Open-Cut Stream Crossings. Fisheries and Oceans Canada Ontario Operational Statement, Version 1.0, 4 pp. Ontario, Canada.

Fisheries and Oceans Canada. (2019). Request for Review Form and Guidance. 11 pp. Canada.

Fisheries and Oceans Canada. (2020). Aquatic Species at Risk Map. Canada. Retrieved from <https://www.dfo-mpo.gc.ca/species-especies/sara-lep/map-carte/index-eng.html>

Forest Breeding Bird Survey. (2008). Forest Bird Monitoring Program - Site Set-Up and Bird Survey Instructions. Guelph, Ontario: Canadian Wildlife Service.

Forman, R. T. (1995). Land Mosaics: The Ecology of Landscapes and Regions. Island Press.

Francis, C. M., Austen, M. J., Bowles, J. M., & Draper, W. B. (2000). Assessing Floristic Quality in Southern Ontario Woodlands. *Natural Areas Journal*, 20, 66-77.

Freemark, K. E., & Collins, B. (1992). Landscape Ecology of Birds Breeding in Temperate Forest Fragments. In J. M. Hagan III, & D. W. Johnston, *Ecology and Management of Neotropical Landbirds* (pp. 443-454). Washington, D.C.: Manomet Bird Observatory, Smithsonian Institute Press.

Fry, G., & Sarlov-Herlin, I. (1997). The ecological and amenity functions of woodland edges in the agricultural landscape: a basis for design and management. *Landscape and Urban Planning*, 37(1-2), 45-55.

Geomatics International Inc. (1995). Management Options for Old-Field Sites in Southern Ontario - Guidelines and Literature Review. 17 pp. Ontario, Canada: Southern Region Science and Technology Transfer Unit.

Gibbons, P. G., Evans, M., Maron, M., Gordon, A., Le Roux, D., von Hase, A., . . . Possingham, H. (2015). A loss-gain calculator for biodiversity offsets and the circumstances in which No Net Loss is feasible. *Conservation Letters*(Open Access), 1-11.

Gilman, E. (2003). Branch-to-stem diameter ratio affects strength of attachment. *Journal of Arboriculture*, 29(5), 291-293.

Government of Ontario. (2014). Tree Atlas found at:
<https://www.ontario.ca/environment-and-energy/tree-atlas/>

Grace, J. M., & Zarnoch, S. J. (2013). Influence of forest road buffer zones on sediment transport in the Southern Appalachian Region. In J. Guldin, *Proceedings of the 15th Biennial Southern Silvicultural Research Conference* (Vol. 175, pp. 387-493). Asheville, North Carolina, USA: U.S. Department of Agriculture, Forest Service, Southern Research Station.

Grand River Conservation Authority (GRCA). (2005). *Environmental Impact Study Guidelines and Submission Standards for Wetlands*

Greater Golden Horseshoe Conservation Authorities. (2006). *Erosion and Sediment Control Guideline for Urban Construction*.

Gregory, R., Ohlson, D., & Arvai, J. (2006). Deconstructing adaptive management: criteria for applications to environmental management. *Ecological Applications*, 16(6), 2411-2425.

Guzy, J. C., Halloran, K. M., Homyack, J. A., Thornton-Frost, J. E., & Willson, J. D. (2019). Differential responses of amphibian and reptile assemblages to size of riparian buffers within managed forests. *Ecological Applications*, 29(8), e01995.

Harris, I. D., & Scheck, J. (1991). From Implications to Applications: The Dispersal Corridor Principle Applied to the Conservation of Biological Diversity. In D. A. Saunders, & R. J. Hobbs, *Nature Conservation 2: The Role of Corridors*. Surrey Beatty & Sons.

Haspel, C., & Calhoon, R. E. (1991). Ecology and behavior of free-ranging cats in Brooklyn, New York. In L. W. Adams, & D. L. Leedy, *Wildlife Conservation in Metropolitan Environments* (pp. 27-30). Columbia, Maryland, USA: National Institute for Urban Wildlife Symposium.

Hawkes, V. C., & Gregory, P. T. (2012). Temporal changes in the relative abundance of amphibians relative to riparian buffer width in western Washington, USA. *Forest Ecology and Management*, 274, 67-80.

Hilditch, T. C. (1993). Use of Woodland Evaluation System in Municipal Planning. In S. Strobl (Ed.), *Significant Woodlands Workshop Proceedings* (pp. 29-34). Leslie M. Frost Natural Resources Centre.

Hilty, J.A., Worboys, G.L., Keeley, A., Woodley, S., Lausche, B., Locke, H., Carr, M., Pulsford, I., Pittock, J., White, J.W., Theobald, D.M., Levine, J., Reuling, Mo., Watson, J.E.M., Ament, R., & Tabor, G.M. (2020). Guidelines for Conserving Connectivity Through Ecological Networks and Corridors (Issue 30). International Union for the Conservation of Nature (IUCN). <https://portals.iucn.org/library/node/49061>

Holmes, A. M., Hess, Q. F., Tasker, R. R., & Hanks, A. J. (1991). The Ontario Butterfly Atlas. (D. Friesen, Ed.) Altona.

Houlahan, J.E., and Findlay, S.C. (2003). The effects of adjacent land use on wetland amphibian species richness and community composition. *Canadian Journal of Fisheries and Aquatic Sciences* 60: 1078-1094.

Hounsell, S. W. (1989). Methods for Assessing the Sensitivity of Forest Birds and their Habitats to Transmission Line Disturbances. Toronto: Land Use and Environmental Planning Department, Ontario Hydro.

Interagency Visitor Use Management Council (IUVMC). 2019. Monitoring Guidebook: Evaluating the Effectiveness of Visot Use Management. June 2019, 118 pp.

International Union for Conservation of Nature. (2016). Biodiversity Offsets. Retrieved from <https://www.iucn.org/theme/business-and-biodiversity/our-work/business-approaches-and-tools/biodiversity-offsets>

Jalava, J. V., Sorrill, P. J., Henson, J., and Brodri, K. (2000). The Big Picture Project: Developing a Natural Heritage Vision for Canada's Southernmost Ecological Region. Peterborough: Natural Heritage Information Centre.

Jayasuriya, M. T. (2016). Contrasting functional-based riparian management zones with the fixed-width buffer approach and how it relates to riparian management guidelines. 156 pp. Syracuse, New York, USA: State University of New York, College of Environmental Science and Forestry.

Johnson, R. G., & Temple, S. A. (1986). Assessing habitat quality for birds nesting in fragmented tallgrass prairies. In T. M. Verner, M. L. Morrison, & C. J. Raphi, *Wildlife 2000: Modelling Habitat Relationships of Terrestrial Vertebrates*. Madison, Wisconsin, USA: University of Wisconsin Press.

Jones, C., Palmer, R. M., Motkaluk, S., and Walters, M. (2002). Watershed Health Monitoring: Emerging Technologies. CRC Press.

Jones, C., Somers, K. M., Craig, B., and Reynoldson, T. B. (2007). Ontario Benthos Biomonitoring Network Protocol. Ontario Ministry of Environment.

Koh, N. S., Hahn, T., and Ituarte-Lima, C. (2014). A comparative analysis of ecological compensation programs: The effect of program design on the social and ecological outcomes. Sweden: Uppsala University.

Kuglerova, L., Agren, A., Jansson, R., and Laudon, H. (2014). Towards optimizing riparian buffer zones: Ecological and biogeochemical implications for forest management. *Forest Ecology and Management*, 334, 74-84.

Lake Simcoe Region Conservation Authority. (2019). Ecological Offsetting Policy. 19 pp. Ontario, Canada.

Lauenroth, W. K., and Gill, R. (2003). Turnover of root systems. *Root Ecology*, 61-89.

Lee, H., Bakowsky, W., Riley, J., Bowles, J., Puddister, M., Uhlig, P., & McMurray, S. (1998). Ecological Land Classification for Southern Ontario: First Approximation and Its Application. Ministry of Natural Resources and Forestry.

Lee, P., Smyth, C., and Boutin, S. (2004). Quantitative review of riparian buffer width guidelines from Canada and the United States. *Journal of Environmental Management*. 70: 165-180

Lemieux, Christopher J., Aerin L. Jacob, and Paul A. Gray. 2021. Implementing Connectivity Conservation in Canada. Canadian Council on Ecological Areas (CCEA) Occasional Paper No. 22. Canadian Council on Ecological Areas, Wilfrid Laurier University, Waterloo, Ontario, Canada. vi + 216 pp.

Leslie, H. (2018). Value of ecosystem-based management. *Proceedings of the National Academy of Sciences of the United States of America*. Vol 115, No. 14.

Leuty, T. (1999). Fact Sheet: Farm Tile Drains and Tree Roots. Ontario, Canada: Ontario Ministry of Agriculture, Food and Rural Affairs.

Lind, L., Hasselquist, E. M., & Laudon, H. (2019). Towards ecologically functional riparian zones: A meta-analysis to develop guidelines for protecting ecosystem functions and biodiversity in agricultural landscapes. *Journal of Environmental Management*, 249, 109391.

Little, C., Cuevas, J. G., Lara, A., Pino, M., & Schoenholtz, S. (2015). Buffer effects of streamside native forests on water provision in watersheds dominated by exotic forest plantations. *Ecohydrology*, 8(7), 1205-1217.

Macfarlane, D. M., Bredin, I. P., Adams, J. B., Zungu, M. M., Bate, G. C., & Dickens, C. W. (2015). Preliminary guideline for the determination of buffer zones for rivers, wetlands, and estuaries. Water Research Commission.

Magee, D. (1996). Preliminary List of the Area-Sensitive Breeding Birds. Unpublished.

Maron, M., Brownlie, S., Bull, J. W., Evans, M. C., von Hase, A., Quetier, F., . . . Gordon, A. (2018). The many meanings of no net loss in environmental policy. *Nature Sustainability*, 1(1), 19-27.

Marshall Macklin Monaghan Ltd., Paragon Engineering Ltd., and Aquafor Beech Ltd. (1995). City of London Subwatershed Studies Implementation Plan. London.

Matlack, G. R. (1993). Sociological edge effects: Spatial distribution of human impacts in suburban forest fragments. *Environmental Management*, 17(6), 153-164.

McLachlan, S. M., and Bazely, D. R. (2003). Outcomes of long term deciduous forest restoration in southwestern Ontario, Canada. *Biological Conservation*, 113(2), 159-169.

McLaren, M. A., Konze, K., and Twiss, M. (1998). Wildlife monitoring programs and inventory techniques for Ontario. South Porcupine: Ontario Ministry of Natural Resources - Boreal Science Section.

McWilliam, W., Eagles, P., Seasons, M., and Brown, R. (2012). Evaluation of planning and management approaches for limiting residential encroachment impacts within forest edges: A southern Ontario case study. *Urban Ecosystems*, 15(3), 753-772.

Milne, R. J., and Bennett, L. P. (2007). Biodiversity and ecological value of conservation lands in agricultural landscapes of southern Ontario, Canada. *Landscape Ecology*, 22, 657-670.

MECP (Ministry of Environment, Conservation, and Parks). (1990a). Environmental Assessment Act, R.S.O. 1990, c. E.18. Ontario.

MECP (Ministry of Environment, Conservation, and Parks). (1990b). Ontario Water Resources Act, R.S.O. 1990, c. Ontario.

MECP (Ministry of Environment, Conservation, and Parks). (2007). Endangered Species Act, 2007, S.O. 2007, c. Ontario.

MECP (Ministry of Environment, Conservation, and Parks). (2019). Management of Excess Soil - A Guide for Best Management Practices.

MMAH (Ministry of Municipal Affairs and Housing). (2017a). The Green Belt Plan, 2017 under the Greenbelt Act, 2005. 98 pp. Ontario, Canada: Queen's Printer for Ontario.

MMAH (Ministry of Municipal Affairs and Housing). (2017b). The Oak Ridges Moraine Conservation Plan, 2017 under the Oak Ridges Moraine Conservation Act, 2001. 88 pp. Ontario, Canada: Queen's Printer for Ontario.

MMAH (Ministry of Municipal Affairs and Housing). (2024). Provincial Planning Statement, 2024. Approved by the Lieutenant Governor in Council, Order in Council No. 1099/2024, issued under section 3 of the Planning Act and came into effect October 20, 2024. It replaces the Provincial Policy Statement that came into effect on May 1, 2020. 56 pp. Ontario, Canada: King's Printer for Ontario.

MNRF (Ministry of Natural Resources and Forestry). (1990). Conservation Authorities Act, R.S.O. 1990, c. Ontario.

MNRF (Ministry of Natural Resources and Forestry). (1997a). Fish and Wildlife Conservation Act, 1997, S.O. 1997, c. 41.

MNRF (Ministry of Natural Resources and Forestry). (1997b). Forest Management Guidelines for the Protection of the Physical Environment.

MNRF (Ministry of Natural Resources and Forestry). (2000a). A Silvicultural Guide to Managing Southern Ontario Forests.

MNRF (Ministry of Natural Resources and Forestry). (2000b). Significant Wildlife Habitat Technical Guide. Peterborough: Queen's Printer for Ontario.

MNRF (Ministry of Natural Resources and Forestry). (2004). Ontario Tree Marking Guide, Version 1.1. Ont. Min. Nat. Resource. Queen's Printer for Ontario. Toronto. 252 p.

MNRF (Ministry of Natural Resources and Forestry). (2006). Provincial Parks and Conservation Reserves Act, 2006, S.O. 2006, C. 12 - Bill 11. Ontario.

MNRF (Ministry of Natural Resources and Forestry). (2010a). Forest Management Guide for Conserving Biodiversity at the Stand and Site Scales. Toronto: Queen's Printer for Ontario.

MNRF (Ministry of Natural Resources and Forestry). (2010b). Natural Heritage Reference Manual for Natural Heritage Policies of the Provincial Policy Statement, 2005. Toronto: Queen's Printer for Ontario.

Ministry of Natural Resources and Forestry. (2011a). Bats and Bat Habitats: Guidelines for Wind Power Projects. Queen's Printer for Ontario.

MNRF (Ministry of Natural Resources and Forestry). (2011b). Ontario's Forest Management Guides: An Introduction. 18 pp.

MNRF (Ministry of Natural Resources and Forestry). (2012). Categorizing and Protecting Habitat under the Endangered Species Act, 2007. 8 pp. Toronto, Ontario: Species at Risk Branch, Policy Division.

MNRF (Ministry of Natural Resources and Forestry). (2013a). Species at Risk Branch – Best Practices Technical Note. 11 pp. Peterborough, Ontario

MNRF (Ministry of Natural Resources and Forestry). (2013b). The Stream Permanency Handbook for South-Central Ontario, 2nd Ed, 30 pp.

MNRF (Ministry of Natural Resources and Forestry). (2014). Significant Wildlife Habitat Mitigation Support Tool.

MNRF (Ministry of Natural Resources and Forestry). (2015a). Significant Wildlife Habitat Criteria Schedules for Ecoregion 7E. Peterborough.

MNRF (Ministry of Natural Resources and Forestry). (2015b). Survey Protocol for Blanding's Turtle (*Emydoidea blandingii*) in Ontario. Peterborough: Queen's Printer for Ontario.

MNRF (Ministry of Natural Resources and Forestry). (2015c). Survey Protocol for Queensnake (*Regina septemvittata*) in Ontario. Peterborough: Species at Risk Policy Branch.

MNRF (Ministry of Natural Resources and Forestry). (2016). Survey Protocol for Ontario's Species at Risk Snakes. Peterborough: MNRF Species Conservation Policy Branch.

MNRF (Ministry of Natural Resources and Forestry). (2017a). A Wetland Conservation Strategy for Ontario 2017-2030. 52 pp. Toronto, Ontario, Canada: Queen's Printer for Ontario.

MNRF (Ministry of Natural Resources and Forestry). (2017b). Ontario Stream Assessment Protocol - Version 10. (L. Stanfield, Ed.) Ontario, Canada: Fisheries Policy Section.

MNRF (Ministry of Natural Resources and Forestry). (2017c). Survey Protocol for Species at Risk Bats within Treed Habitats, Little Brown Myotis, Northern Myotis, Tricolored Bat. Ministry of Natural Resources and Forestry, Guelph District.

MNRF (Ministry of Natural Resources and Forestry). (2020). Natural Heritage Information Centre. Ontario, Canada. Retrieved from <https://www.ontario.ca/page/natural-heritage-information-centre>

MNRF (Ministry of Natural Resources and Forestry). (2021). Birds and bird habitats: guidelines for windpower projects. Retrieved from <https://www.ontario.ca/page/birds-and-bird-habitats-guidelines-windpower-projects>

MNRF (Ministry of Natural Resources and Forestry). (2022). Ontario Wetland Evaluation System, Southern Manual, 4th Edition. King's Printer for Ontario, 247 pp.

Mitchell, G., & Crook, G. W. (1996). An Ontario Base Map terrain analysis toolbox for resource managers. NODA - Notes, Great Lakes Forestry Centre. Ontario, Canada.

Moilanen, A., and Kotiaho, J. S. (2018). Fifteen operationally important decisions in the planning of biodiversity offsets. *Biological Conservation*, 227, 112-120.

Morrison-Saunders, A., and Pope, J. (2013). Conceptualising and managing trade-offs in sustainability assessment. *Environmental Impact Assessment Review*, 38, 54-63.

Noga, W., and Adamowicz, W. L. (2014). *A Study of Conservation Offset Programs: Lessons Learned from a Review of Programs, Analysis of Stakeholder Perceptions, and Investigation of Transaction Costs*. 65 pp. Ottawa, Ontario, Canada: Sustainable Prosperity.

North-South Environmental. (2009). *Inventory and Evaluation of Woodlands*: City of London. London: City of London.

North-South Environmental. (2022). *Buffer Width Discussion Paper*. Prepared for Niagara Peninsula Conservation Authority, August 5, 2022, 74 pp.

Nottawasaga Valley Conservation Authority. (2019). *Achieving Net Gains through Ecological Offsetting: Guidelines for Preparing a Site-Specific Ecological Offsetting Plan*. Draft for Discussion, 20 pp. Ontario, Canada.

Olden, A., Selonen, V. A., Lehkonen, E., & Kotiaho, J. S. (2019). The effect of buffer strip width and selective logging on streamside plant communities. *BMC Ecology*, 19(1), 9.

Oldham, M. J. (1994). *Natural Heritage Resources of Ontario: Mosses*. 23 pp. Peterborough, Ontario: Natural Heritage Information Centre.

Oldham, M. J. (2003). *Conservation Status of Ontario Amphibians*. Peterborough, ON: Natural Heritage Information Centre. Ontario Ministry of Natural Resources.

Oldham, M. J. (2017). *List of the Vascular Plants of Ontario's Carolinian Zone (Ecoregion 7E)*. 132 pp. Peterborough, Ontario: Carolinian Canada and Ministry of Natural Resources and Forestry.

Oldham, M. J., and Brinker, S. R. (2009). *Rare Vascular Plants of Ontario*. Natural Heritage Information Centre.

Oldham, M. J., and Weller, W. F. (2000). Ontario Herpetofaunal Atlas. Ontario, Canada: Natural Heritage Information Centre.

Oldham, M. J., Bakowsky, W. D., and Sutherland, D. A. (1995). Floristic Quality Assessment System for Southern Ontario. Peterborough: Ministry of Natural Resources and Forestry.

Oldham, M., Bakowsky, W., and Sutherland, D. (1995). Floristic Quality Assessment System for Southern Ontario.

Ontario American Badger Recovery Team. (2010). Recover Strategy for the American Badger (*Taxidea taxus*) in Ontario. 27 pp. Peterborough, Ontario: Ministry of Natural Resources and Forestry.

Ontario Breeding Bird Atlas. (2001). Ontario Breeding Bird Atlas Guide for Participants. Guelph, Ontario.

Ontario Breeding Bird Atlas. (2002). Ontario Breeding Bird Atlas - Standardized Owl Surveys. Guelph: Bird Studies Canada, Federation of Ontario Naturalists, Canadian Wildlife Service, Ontario Field Ornithologists, and Ministry of Natural Resources and Forestry.

Ontario Breeding Bird Atlas. (2007). The Atlas of the Breeding Birds of Ontario, 2001-2005. (M. D. Cadman, D. A. Sutherland, G. G. Beck, D. Lepage, & A. R. Couturier, Eds.) Toronto, Ontario, Canada: Bird Studies Canada, Environment Canada, Ontario Field Ornithologists, Ministry of Natural Resources and Forestry, and Ontario Nature.

Ontario Centre for Soil Resource Evaluation. (1993). Field Manual for Describing Soils in Ontario (4th ed.). Ontario, Canada: Publication No. 93-1.

Ontario Institute of Pedology. (1985). Field Manual for Describing Soils (Third ed.). Guelph: Ontario Institute of Pedology, Guelph Agriculture Centre, and University of Guelph.

Ontario Nature. (2019). Ontario Reptile and Amphibian Atlas. Ontario, Canada: Toronto Entomologists' Association. Retrieved from <https://www.ontarioinsects.org/herp/>

Ontario Road Ecology Group. (2010). A Guide to Road Ecology in Ontario. 72 pp. Scarborough, Ontario

Ontario (2009). Lake Simcoe Protection Plan

Ouin, A., Cabanettes, A., Andrieu, E., Deconchat, M., Roume, A., Vigan, M., & Larrieu, L. (2015). Comparison of tree microhabitat abundance and diversity in the edges and interior of small temperate woodlands. *Forest Ecology and Management*, 340, 31-39.

Palone, R. S., & Todd, A. H. (1997). Chesapeake Bay Riparian Handbook: A Guide for Establishing and Maintaining Riparian Forest Buffers. Radnor, Pennsylvania, USA: USDA Forest Service.

Poulton, D., & Bell, A. (2017). Navigating the Swamp: Lessons on Wetland Offsetting for Ontario. Ontario, Canada.

Powell, J. S., & Babbit, K. J. (2016). Buffer-mediated effects of clearcutting on in-pool amphibian productivity: Can aquatic processes compensate for terrestrial habitat disturbance? *Forests*, 8(1), 10.

Powell, J. S., & Babbitt, K. J. (2015). An experimental test of buffer utility as a technique for pool-breeding amphibians. *PloS one*, 10(7).

Powell, J. S., & Babbitt, K. J. (2015). Despite buffers, experimental clearcuts impact amphibian body size and biomass. *PloS one*, 10(11).

Powney, G., Broaders, L., & Oliver, T. (2012). Towards a measure of functional connectivity: Local synchrony matches small scale movements in a woodland edge butterfly. *Landscape Ecology*, 27, 1109-1120.

Pratt, W.A., and Fox, T.R. (2009). Streamside Management Zones Effectiveness for Protecting Water Quality after Forestland Application of Biosolids. *Journal of Environmental Quality*. 38:2106-2120

Pyron, M. (2010). Characterizing Communities. *Nature Education Knowledge*, 3(10):39.

Province of Ontario. (2020). *Public Lands Act*, R.S.O. 1990, c.P.43. Ontario.

Renwick, W.H. (2009). Lakes and Reservoirs of North America in *Encyclopedia of Inland Waters*. 2250 pp. Millbrook, NY, USA.

Region of Waterloo. (2016). Region of Waterloo Greenlands Network Implementation Guideline. Ontario, Canada.

Richardson, J. S., Naiman, R. J., & Bisson, P. A. (2012). How did fixed-width buffers become standard practice for protecting freshwaters and their riparian areas from forest harvest practices? *Freshwater Science*, 31(1), 232-238.

Riley, J. L. (1995). Distribution and Status of the Vascular Plants of the Central Region. Richmond Hill: Ontario Ministry of Natural Resources and Forestry.

Riley, J. R., & Mohr, P. (1994). The Natural Heritage of Southern Ontario's Settled Landscapes: a Review of Conservation and Restoration Ecology for Land-Use and Landscape Planning. Aurora: Ministry of Natural Resources and Forestry.

Sandilands, A. (1997). Memo to London ESA Committee April 9, 1997 on Freemark and Collins (1992). London, Ontario.

Sawatzky, M. E., & Fahrig, L. (2019). Wetland buffers are no substitute for landscape-scale conservation. *Ecosphere*, 10(4), e02661.

Semlitsch, R. D., & Newbold, J. D. (2003). Biological criteria for buffer zones around wetlands and riparian habitats for amphibians and reptiles. *Conservation Biology*, 17, 1219-1228.

Simmonds, J. S., Sonter, L. J., Watson, J. E., Bennun, L., Costa, H. M., Dutson, G., . . . Maron, M. (2019). Moving from biodiversity offsets to a target-based approach for ecological compensation. *Conservation Letters*(Open Access), 1-11.

Smith, P. G., & Theberge, J. B. (1987). Evaluating natural areas using multiple criteria: Theory and practice. *Environmental Management*, 11, 447-460.

Soil Classification Working Group. (1998). [The Canadian System of Soil Classification \(Third ed.\)](#). Agriculture and Agri-Food Canada Publication 1646, 187 pp.

Solymar, B. (2005). A Stewardship Guide to Grasslands in Southern Ontario: An Introduction for Farmers and Rural Landowners. 34 pp. Ontario, Canada: Ontario Barn Owl Recovery Project.

Strong, W. L., Oswald, E. T., & Downing, D. J. (1990). The Canadian Vegetation Classification System: First Approximation (Vol. 25). (Canada Committee on Ecological Land Classification, & National Vegetation Working Group, Eds.) Ottawa, Ontario, Canada.

Sweeney, B. W., & Newbold, J. D. (2014). Streamside forest buffer width needed to protect stream water quality, habitat, and organisms: A literature review. *Journal of the American Water Resources Association*, 50(3), 560-584.

Thompson, B. (2015). Recreational trails reduce the density of ground-dwelling birds in protected areas. *Environmental Management*. 2015 May; 55(5):1181-90. Accessed at: <https://pubmed.ncbi.nlm.nih.gov/25813628/>

Teply, M., McGreer, D., & Ceder, K. (2014). Using simulation models to develop riparian buffer strip prescriptions. *Journal of Forestry*, 112(3), 302-311.

Terra Geographical Studies Inc. (1994). Draft Terrestrial Resource Strategy. Ontario.

Toronto and Region Conservation Authority (TRCA) and Credit Valley Conservation (CVC). (2014). [Evaluation, Classification and Management of Headwater Drainage Features Guideline](#). Finalized January 2014.

TRCA Approval July 2013 (Finalized January 2014).

Toronto and Region Conservation Authority. (2018). Guideline for Determining Ecosystem Compensation. 46 pp. Ontario, Canada.

Toronto and Region Conservation Authority (TRCA). (2019a). Erosion and Sediment Control Guide for Urban Construction. 235pp. Ontario, Canada.

Toronto and Region Conservation Authority (TRCA). (2019b). Trails Strategy for the Greater Toronto Region. September 2019, 63 pp.

Toronto Entomologists' Association. (2018). Ontario Butterfly Atlas. Ontario, Canada. Retrieved from <https://www.ontarioinsects.org/atlas/>

Troy, A., & Bagstad, K. (2009). Estimating Ecosystem Services in Southern Ontario. Ontario Ministry of Natural Resources and Forestry.

UTRCA (Upper Thames River Conservation Authority). (1997). Oxford County Terrestrial Ecosystems Study: A Natural Heritage Study for Oxford County. London.

UTRCA (Upper Thames River Conservation Authority). (2003). Middlesex County Natural Heritage Systems Study. London.

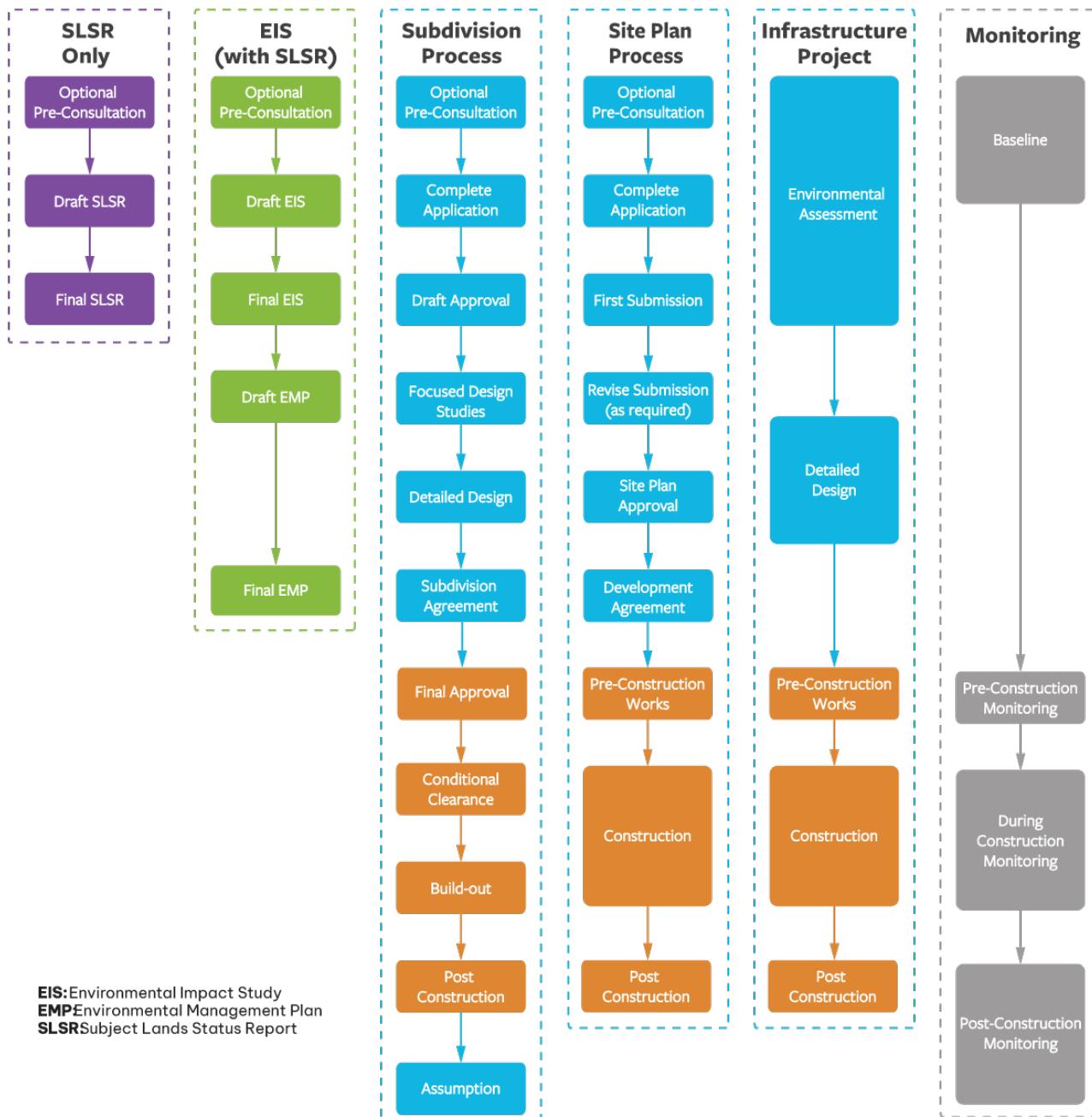
UTRCA (Upper Thames River Conservation Authority). (2006). UTRCA Reference Manual - Determination of Regulation Limits – Final Terms of Reference. London.

UTRCA (Upper Thames River Conservation Authority). (2014). Middlesex Natural Heritage Systems Study: A Study to Identify Natural Heritage Systems in Middlesex County. London.

Valdés, A., J. Lenoir, P. De Frenne, E. Andrieu, J. Brunet, O. Chabrerie, O., S. A. O. Cousins, M. Deconchat, P. De Smedt, M. Diekmann, S. Ehrmann, E. Gallet-Moron, S. Gärtner, B. Giffard, K. Hansen, M. Hermy, A. Kolb, V. Le Roux, J. Liira, J. Lindgren, L. Martin, T. Naaf, T. Paal, W. Proesmans, M. Scherer-Lorenzen, M. Wulf, K. Verheyen and G. Decocq. (2020). High ecosystem service delivery potential of small woodlands in agricultural landscapes. *Journal of Applied Ecology*, 57(1), 4-16.

Vanneste, T., S. Govaert, F. Spicher, J. Brunet, S. A. Cousins, G. Decocq, G., M. Diekmann, B. J. Graae, P. Hedwall, R. E. Kapás, J. Lenoir, J. Liira, S. Lindmo, K. Litza, T. Naaf, A. Orczewska, J. Plue, M. Wulf, K. Verheyen and P. De Frenne. (2020). Contrasting microclimates among hedgerows and woodlands across temperate Europe. *Agricultural and Forest Meteorology*, 281, 107818.

Woodard, S. E., & Rock, C. A. (1995). Control of residential stormwater by natural buffer strips. *Lake and Reservoir Management*, 11(1), 37-45.


zu Ermgassen, S. O., Baker, J., Griffiths, R. A., Strange, N., Struebig, M. J., & Bull, J. W. (2019). The ecological outcomes of biodiversity offsets under "no net loss" policies: A global review. *Conservation Letters*, 12(6), e12664.

Appendix A

Natural Heritage Study and Planning Process

APPENDIX A

Natural Heritage Study and Planning Process

Appendix B

Appendix B.1
Natural Heritage Study Scoping Checklist (NHSSC)

Appendix B.2
Subject Lands Status Report (SLSR) Completeness Checklist

Appendix B.3
Environmental Impact Study (EIS) Completeness Checklist

APPENDIX B.1

Natural Heritage Study Scoping Checklist (NHSSC)

General Information:

Application/Project Name: _____

Proponent: _____ Date: _____

Type of Application/File Number: _____

Natural heritage study type*: _____

Lead Consultant: _____

Primary Contact: _____

Ecological Consultant: _____

* Natural heritage study type: May be a SLSR (Subject Lands Status Report), EIS (Environmental Impact Study) or other natural heritage study (such as a Species at Risk screening study). If an EIS, please specify if it is a Full EIS, Scoped EIS or Focussed EIS. See Section 2.3 for descriptions of each.

Natural heritage study pathway selected:

Option A: No pre-consultation with City	Option B: Pre-consultation with City
<input type="checkbox"/> NHSSC completed by applicant's consultant(s)	<input type="checkbox"/> NHSSC completed by applicant's consultant(s)
<input type="checkbox"/> NHSSC not scoped with City prior to submission	<input type="checkbox"/> NHSSC scoped in consultation with City Ecologist and TRT (see below)
<input type="checkbox"/> NHSSC accepted by City Ecologist as part of a complete natural heritage study submission	<input type="checkbox"/> NHSSC accepted by City Ecologist as confirmed natural heritage study Terms of Reference

Explanatory Notes, if needed: _____

Technical Review Team (TRT):

City Ecologist: _____

City Planner (for the File): _____

Conservation Authority Representative(s) (if applicable): _____

Other Government Agency Representative (if applicable): _____

Other Representative (if applicable): _____

First Nation(s) Representative(s) (if applicable): _____

Subject Lands and Study Area:

Location/Address and Size (ha) of Subject Lands: _____

Study Area Size (approximate ha): _____ Subwatershed: _____

Map of Subject Lands and Study Area on most current available air photo

Map of Subject Lands and Study Area with NHS components within ~1 km

Is the proposed location within 120 m of the Thames River?

Yes** No ****If Yes, must reach out to and engage with local First Nation communities.**

Policy Framework:

Study must demonstrate how it conforms to the *Provincial Planning Statement*

Study must demonstrate how it conforms to *The London Plan*

Study must demonstrate how it conforms to: _____

Mapping That Must Be Considered:

Map 1 Place Types currently in place:

Green Space on subject lands Environmental Review on subject lands

Green Space in adjacent lands Environmental Review in adjacent lands

Other Place Types: _____

Map 4 Active Mobility Network considerations:

Pathway placement and /or future trail accesses to be considered

Map 5 Natural Heritage System components mapped in Study Area:

<input type="checkbox"/> Watercourse(s)/Fish Habitat	Name: _____
<input type="checkbox"/> Provincially Significant Wetland (PSW)	Name: _____
<input type="checkbox"/> Area of Natural & Scientific Interest	Name: _____
<input type="checkbox"/> Environmentally Significant Area (ESA)	Name: _____
<input type="checkbox"/> Wetlands (Non-PSW)	<input type="checkbox"/> Unevaluated Wetlands
<input type="checkbox"/> Potential ESA	<input type="checkbox"/> Upland Corridors
<input type="checkbox"/> Significant Woodlands	<input type="checkbox"/> Woodlands
<input type="checkbox"/> Significant Valleylands	<input type="checkbox"/> Valleylands
<input type="checkbox"/> Unevaluated Vegetation Patch(es)	<input type="checkbox"/> Potential Naturalization Areas

Patch No(s). _____

Note: Air photo interpretation and / or previous studies may identify potential features not on Map 5.

Map 6 Natural Hazards and Conservation Authority Mapping to be Considered:

- Natural Hazards on subject lands
- Natural Hazards adjacent to subject lands
- Conservation Authority Regulated Areas on subject lands
- Conservation Authority Regulated Areas on adjacent lands

Required Field Investigations:

Aquatic:

- Aquatic Habitat Assessment: _____
- Fish Community (Collection): _____
- Spawning Surveys: _____
- Benthic Invertebrate Survey: _____
- Mussel Surveys: _____
- Other: _____

Wetlands:

- Wetland Delineation: _____
- Wetland Evaluation (OWES): _____
- Other: _____

Terrestrial (Upland and Lowland):

Vegetation Communities Mapping and Assessment (i.e., ELC): _____

Botanical Inventories: Winter Spring Summer Fall

Bird Surveys (type & frequency):

Breeding Birds: _____ Crepuscular Birds: _____

Raptors: _____ Other: _____

Amphibian Surveys (type & frequency): _____

Reptile Surveys (type & frequency):

Turtles: _____

Snakes: _____

Other: _____

Bat Habitat Surveys (type & frequency):

Bat Habitat and/or Cavity Surveys: _____

Bat Acoustic Surveys: _____

Terrestrial (Upland and Lowland) (continued):

Mammal Surveys (other than Bats) (type & frequency): _____

Winter Wildlife Surveys (type & frequency): _____

Insect Surveys (type & frequency):

Butterflies (Lepidoptera): _____

Dragonflies / Damselflies (Odonata): _____

Other: _____

Species at Risk (SAR) Specific Surveys (type & frequency): _____

Significant Wildlife Habitat (SWH) Specific Surveys (type & frequency): _____

Other: _____

Supporting Concurrent Studies/Investigations Required:

Hydrogeological/Groundwater: _____

Surface Water/Hydrology: _____

Water Balance (feature and/or site-based): _____

Fluvial Geomorphological (type & frequency):

Headwater Drainage Feature (HDF) Assessment: _____

Other: _____

Geotechnical: _____

Tree Inventory (specify where on Subject Lands): _____

Other: _____

Required Assessment and Evaluation of Significance:

Federal:

Fish Habitat Other Federal: _____

Species at Risk

Provincial:

Provincially Significant Wetlands Significant Woodlands

Significant Valleylands Significant Wildlife Habitat (Ecoregion 7E)

Areas of Natural & Scientific Interest Fish Habitat

Water Resource Systems (specify): _____

Provincially Endangered or Threatened Species (specify if known): _____

Municipal - City of London:

Environmentally Significant Areas (ESA), Potential ESA

Significant Woodlands, Woodlands

Significant Valleylands, Valleylands

Wetlands, Unevaluated Wetlands

Significant Wildlife Habitat

Unevaluated Vegetation Patches (Map 5)

Other Vegetation Patches >0.5 ha (unmapped)

Potential Naturalization Area

Other: _____

Impact Assessment (Required for all EIS):

Impact Assessment

Impact Assessment and Net Effects Table

Environmental Management Recommendations (Required for all EIS and SLSR, and may be required for other natural heritage studies):

Environmental Management

- Recommendations: _____
- Environmental Management Plan (as a stand-alone appendix or report):

- Specifications & Conditions of Approval: _____
- Other: _____

Environmental Monitoring (Required for all EIS and may be required for SLSR and other natural heritage studies):

- Baseline Monitoring (specify framework or more detailed plan):

- Construction Monitoring (specify framework or more detailed plan):

- Post-Construction Monitoring (specify framework or more detailed plan):

Other natural heritage study-specific requirements:

Rationale and Explanatory Notes:

Appendix B.2

Subject Lands Status Report (SLSR) Completeness Checklist

General Information:

Application/Project Name: _____

Proponent: _____ **Date:** _____

Type of Application/File Number: _____

Type of SLSR (Stand alone or the first part to an EIS): _____

Lead Consultant: _____

Primary Contact: _____

Ecological Consultant: _____

This checklist outlines the report requirements for an accepted SLSR as part of a complete application. Completed by City Ecologists, fundamental components of every report are noted with asterisk (). Missing asterisk (*) items at the time of submission will deem the SLSR incomplete.*

PART 1: Required components outside body of report

Before main body of report (ref. Section 2.5.2.1)

- Title page
- Authors' signatures*
- Executive Summary
- Table of Contents

PART 2: Introduction

Introductory section content (ref. Section 2.5.2.2)

- High level context or rationale for the study (development / application intent)
- Outline of NHSSC scoping pathway followed (also ref. Sections 2.4) *
- or N/A Mention of regulatory agencies and organizations engaged outside the City with corresponding documentation in Appendices, as applicable (also ref. Sections 2.4) *
- Purpose of the study
- Clearly described subject lands and study area (also ref. Section 2.1.3)
- Planning / policy / regulatory trigger(s) for the study

Maps / Figures associated with Introductory section (ref. Section 2.5.2.2)

- Subject lands and study area boundaries on most current available air photo *
- Subject lands and study area boundaries in broader Natural Heritage System context (approx.1 km radius) from London Plan Map 1 *
- Subject lands and study area boundaries in broader Natural Heritage System context (approx.1 km radius) from London Plan Map 5 *

PART 3: Physical Environment

Physical environment section content (ref. Section 2.5.2.3)

- High-level description of physical context for the subject lands and study area
- High-level description of geology and soils in study area
- High-level description of surface water and drainage patterns in study area
- High-level description of groundwater flows, levels and sensitivities in study area
- or N/A High-level description of any areas regulated by the Conservation Authority

Maps / Figures associated with Physical Environment section

- Subject lands and study area boundaries on most current available air photo with topographic mapping *
- or N/A Subject lands and study area boundaries on most current available air photo with areas regulated by the Conservation Authority *

PART 4: Natural Environment

Physical environment section content (ref. Section 2.5.2.4)

- High-level description of the natural environment on the subject lands and in the study area *
- or N/A Sub-section on aquatic habitats and species *
 - or N/A Aquatic habitats and species: Background reviewed and findings
 - or N/A Aquatic habitats and species: Methods for any field investigations
 - or N/A Aquatic habitats and species: Results and Discussion
- or N/A Sub-section on wetlands and species *
 - or N/A Wetland habitats and species: Background reviewed and findings
 - or N/A Wetland habitats and species: Methods for any field investigations
 - or N/A Wetland habitats and species: Results and Discussion
- or N/A Sub-section on terrestrial habitats and species *
 - or N/A Terrestrial habitats and species: Background reviewed and findings

or N/A Terrestrial habitats and species: Methods for any field investigations

or N/A Terrestrial habitats and species: Results and Discussion

or N/A Sub-section on ecological linkages (aquatic and / or terrestrial) *

or N/A Ecological linkages: Background reviewed and findings

or N/A Ecological linkages: Methods for any field investigations

or N/A Ecological linkages: Results and Discussion

Note: For species whose location data is considered sensitive, mapping should be provided to the City separately in a map clearly labelled as “confidential and for internal use only”.

Maps / Figures associated with Physical Environment section (ref. Section 2.5.2.4)

or N/A Areas on subject lands and/or within study area where field work was completed, including any survey stations *

or N/A Aquatic habitat within study area *

or N/A Provincially Significant Wetlands (PSW) and non-PSWs within study area *

or N/A Vegetation community types mapped using the Ecological Land Classification (ELC) system within study area *

or N/A Locations of any rare species and/or specialized habitats confirmed on the subject lands *

PART 5: Evaluation of Significance

Evaluation of Significance section content (ref. Section 2.5.2.5)

Discussion and evaluation of Natural Heritage Features and/or Areas already or newly identified on the subject lands and/or in the study area, including applicable screening tables. *

Description of Natural Heritage Features and/or Areas already, or newly identified on the subject lands and/or in the study area (e.g., through previous studies, as applicable)

or N/A Watercourse(s)/Fish Habitat Name: _____

or N/A Provincially Significant Wetland (PSW) * Name: _____

or N/A Area of Natural & Scientific Interest Name: _____

or N/A Environmentally Significant Area (ESA) Name: _____

or N/A Wetlands (Non-PSW) or N/A Unevaluated Wetlands

or N/A Potential ESA or N/A Upland Corridors

or N/A Significant Woodlands * or N/A Woodlands

or N/A Significant Valleylands or N/A Valleylands

- or N/A Unevaluated Vegetation Patch(es)
- or N/A Potential Naturalization Areas
- or N/A Consideration of natural hazards including wetlands identified by the Conservation Authority and their associated areas of interference, and/or other natural hazards

Maps / Figures associated with Natural Environment section (ref. Section 2.5.2.5)

- Types and extent of existing and/or candidate Natural Heritage System (NHS) Features and / or Areas on subject lands and/or within study area identified prior to undertaking evaluations *
- Types and extent of confirmed NHS Features and / or Areas on subject lands identified based on evaluations completed and the areas (in hectares) for each NHS Feature and Area in a table on the map / figure or in the report *
- or N/A Types and extent of identified natural hazards on subject lands and/or within study area including wetlands and their associated areas of interference, including Conservation Authority regulation limits (ref. Section 2.5.2.5) *

Note: Parts 6 through 8 are required for Environmental Impact Studies (EIS) only

PART 9: Environmental Management Recommendations

Environmental Management Recommendations section content (ref. Section 2.5.2.9)

- A sequentially numbered list of environmental management recommendations organized by project phase, from planning and design, through construction, to post-construction and post-development *
- Recommendations for environmental monitoring and subsequent Environmental Management Plan at EIS stage*

PART 10: Conclusions

Conclusions section content (ref. Section 2.5.2.10)

- Summary of key findings *
- Concluding statement *
- Summary of key recommendations or reference to the Environmental Management Recommendations section in the report

PART 11: References

- or N/A Section listing references / sources cited in the report (ref. Sec. 2.5.2.11) *

PART 12: Appendices

- Completed NHSSC (ref. Section 2.4 and use form provided in Appendix B1) *
- or N/A Significant Woodland evaluation form(s), if applicable (ref. Section 3.1.2 and use form provided in Appendix D) or assume significance *
- Significant Wildlife Habitat (SWH) screening list (ref. Section 2.5.2.11) *
- Species at Risk (SAR) habitat screening list (ref. Section 2.5.2.11) *
- Resumes for report contributors (ref. Section 2.5.2.11)
- or N/A Wetland evaluation form(s) PSW re-delineation *
- or N/A Field assessment data sheets (ref. Section 2.5.2.11) *
- Complete species lists with global, national, provincial and local statuses, as applicable (ref. Section 2.5.2.11)

SLSR deemed complete:	<input type="checkbox"/> YES	<input type="checkbox"/> NO
------------------------------	-------------------------------------	------------------------------------

City Reviewer Comments:

Appendix B.3

Environmental Impact Study (EIS) Completeness Checklist

General Information:

Application/Project Name: _____

Proponent: _____ **Date:** _____

Type of Application/File Number: _____

Type of EIS (Full, Scoped or Focused): _____

Lead Consultant: _____

Primary Contact: _____

Ecological Consultant: _____

This checklist outlines the report requirements for an accepted SLSR as part of a complete application. Completed by City Ecologists, fundamental components of every report are noted with asterisk (). Missing asterisk (*) items at the time of submission will deem the SLSR incomplete.*

PART 1: Required components outside body of report

Before main body of report (ref. Section 2.5.2.1)

- Title page
- Authors' signatures *
- Executive Summary
- Table of Contents

PART 2: Introduction

Introductory section content (ref. Section 2.5.2.2)

- High level context or rationale for the study (development / application intent)
- Outline of NHSSC scoping pathway followed (also ref. Sections 2.4) *
- or N/A Mention of regulatory agencies and organizations engaged outside the City with corresponding documentation in Appendices, as applicable (also ref. Sections 2.4) *
- Purpose of the study
- Clearly described subject lands and study area (also ref. Section 2.1.3)
- Planning / policy / regulatory trigger(s) for the study

Maps / Figures associated with Introductory section (ref. Section 2.5.2.2)

- Subject lands and study area boundaries on most current available air photo *
- Subject lands and study area boundaries in broader Natural Heritage System context (approx.1 km radius) from London Plan Map 1 *
- Subject lands and study area boundaries in broader Natural Heritage System context (approx.1 km radius) from London Plan Map 5 *

PART 3: Physical Environment

Physical environment section content (ref. Section 2.5.2.3)

- High-level description of physical context for the subject lands and study area *
- High-level description of geology and soils in study area
- High-level description of surface water and drainage patterns in study area
- High-level description of groundwater flows, levels and sensitivities in study area
- or N/A High-level description of any areas regulated by the Conservation Authority

Maps / Figures associated with Physical Environment section

- Subject lands and study area boundaries on most current available air photo with topographic mapping *
- or N/A Subject lands and study area boundaries on most current available air photo with areas regulated by the Conservation Authority *

PART 4: Natural Environment

Physical environment section content (ref. Section 2.5.2.4)

- High-level description of the natural environment on the subject lands and in the study area *

Note: For species whose location data is considered sensitive, mapping should be provided to the City separately in a map clearly labelled as “confidential and for internal use only”.

Maps / Figures associated with Physical Environment section (ref. Section 2.5.2.4)

- or N/A Areas on subject lands and/or within study area where field work was completed, including any survey stations *
- or N/A Aquatic habitat within study area *
- or N/A Provincially Significant Wetlands (PSW) and non-PSWs within study area*
- or N/A Vegetation community types mapped using the Ecological Land Classification (ELC) system within study area *

or N/A Locations of any rare species and/or specialized habitats confirmed on the subject lands *

PART 5: Evaluation of Significance

Evaluation of Significance section content (ref. Section 2.5.2.5)

Discussion and evaluation of Natural Heritage Features and/or Areas already or newly identified on the subject lands and/or in the study area, including applicable screening tables. *

Description of Natural Heritage Features and/or Areas already, or newly identified, on the subject lands and/or in the study area (e.g., through previous studies, as applicable)

or N/A Watercourse(s)/Fish Habitat Name: _____

or N/A Provincially Significant Wetland (PSW) * Name: _____

or N/A Area of Natural & Scientific Interest Name: _____

or N/A Environmentally Significant Area (ESA) Name: _____

or N/A Wetlands (Non-PSW) or N/A Unevaluated Wetlands

or N/A Potential ESA or N/A Upland Corridors

or N/A Significant Woodlands or N/A Woodlands

or N/A Significant Valleylands or N/A Valleylands

or N/A Unevaluated Vegetation Patch(es)

or N/A Potential Naturalization Areas

or N/A Consideration of natural hazards including wetlands identified by the Conservation Authority and their associated areas of interference, and/or other natural hazards

or N/A Sub-section on aquatic habitats and species

- or N/A Aquatic habitats and species: Background reviewed and findings
- or N/A Aquatic habitats and species: Methods for any field investigations
- or N/A Aquatic habitats and species: Results and Discussion

or N/A Sub-section on wetlands and species

- or N/A Wetland habitats and species: Background reviewed and findings
- or N/A Wetland habitats and species: Methods for any field investigations
- or N/A Wetland habitats and species: Results and Discussion

or N/A Sub-section on terrestrial habitats and species,

- or N/A Terrestrial habitats and species: Background reviewed and findings
- or N/A Terrestrial habitats and species: Methods for any field investigations

or N/A Terrestrial habitats and species: Results and Discussion

Note: For species whose location data is considered sensitive, mapping should be provided to the City separately in a map clearly labelled as “confidential and for internal use only”.

Maps / Figures associated with Natural Environment section (ref. Section 2.5.2.5)

- Types and extent of existing and/or candidate Natural Heritage System (NHS) Features and / or Areas on subject lands and/or within study area identified prior to undertaking evaluations *
- Types and extent of confirmed NHS Features and / or Areas on subject lands identified based on evaluations completed, including Ecological Buffers and the areas (in hectares) for each NHS Feature and Area in a table on the map / figure or in the report *
- or N/A Types and extent of identified natural hazards on subject lands and/or within study area including wetlands and their associated areas of interference, including Conservation Authority regulation limits (ref. Section 2.5.2.5) *
- NHS on subject lands (including Ecological Buffers as appropriate, see Section 5) *

PART 6: Proposed Development

Proposed Development section content (ref. Section 2.5.2.6)

- Summary of proposed development and/or project works on the subject lands *

Maps / Figures associated with Proposed Development section

- Extent of project works and / or development on subject lands on most current available air photo *

PART 7: Impact Assessment

Impact Assessment section content (ref. Section 2.5.2.7)

- Description of pre-existing, direct and indirect impacts related to existing conditions on the subject lands *
- Impact Assessment and Net Effects Table (also ref. Appendix E) *
- or N/A Summary of site or feature-based water balance before mitigation *

PART 8: Avoidance, Mitigation and Compensation

Avoidance, Mitigation and Compensation section content (ref. Section 2.5.2.8)

- Description of avoidance, mitigation and / or compensation measures related to identified impacts associated with the proposed development on the subject lands *
- or N/A Summary of site or feature-based water balance including mitigation

or N/A Natural Heritage System Compensation Plan (where NHS Feature removal and compensation is being proposed) a description of the types and extent of NHS Feature removal as well as the types and extent of NHS Feature replacement / compensation *

Maps / Figures associated with Avoidance, Mitigation and Compensation section

or N/A Natural Heritage System Compensation Plan (where NHS Feature removal and compensation is being proposed), location of recipient site demonstrating sufficient space to receive compensation *

or N/A Natural Heritage System Compensation Plan (where NHS Feature removal and compensation is being proposed), map of types and extent of NHS Feature removal as well as the types and extent of NHS Feature replacement / compensation on the subject lands with the area (in hectares) for the NHS Feature proposed to be removed and replaced clearly shown

PART 9: Environmental Management Recommendations

Environmental Management Recommendations section content (ref. Section 2.5.2.9)

A sequentially numbered list of environmental management recommendations organized by project phase, from planning and design, through construction, to post-construction and post-development *

Recommendations for environmental monitoring *

or N/A Recommendation to demonstrate site or feature-based water balance is being maintained in post-construction monitoring phase *

PART 10: Conclusions

Conclusions section content (ref. Section 2.5.2.10)

Summary of key findings *

Concluding statement *

Summary of key recommendations or reference to the Environmental Management Recommendations section in the report

PART 11: References

Additional items required for an EIS to be ACCEPTED unless identified as “N/A” (not applicable)

or N/A Section listing references / sources cited in the report (ref. Sec. 2.5.2.11)

PART 12: Appendices

- Completed NHSSC (ref. Section 2.4 and use form provided in Appendix B1) *
- or N/A Significant Woodland evaluation form(s), if applicable (ref. Section 3.1.2 and use form provided in Appendix D) *
- or N/A Impact Assessment and Net Effects Table (ref. Section 2.5.2.7 and use form provided in Appendix E) *
- Significant Wildlife Habitat (SWH) screening list (ref. Section 2.5.2.11) *
- Species at Risk (SAR) habitat screening list (ref. Section 2.5.2.11) *
- Resumes for report contributors (ref. Section 2.5.2.11)
- or N/A Wetland evaluation form(s) *
- or N/A Field assessment data sheets (ref. Section 2.5.2.11) *
- Complete species lists with global, national, provincial and local statuses, as applicable (ref. Section 2.5.2.11)

EIS deemed complete: **YES** **NO**

City Reviewer Comments:

Appendix C

Natural Heritage Data Collection Standards

APPENDIX C – Natural Heritage Data Collection Standards

The following sections provide technical guidance related to the specific methodologies and standards that are to be adhered to for data collection informing natural heritage studies within the City of London.

This guidance has been based on the most current and best available guidance at the time, and does not preclude the application of more current and generally accepted guidance if and when applicable and available.

Background

The identification and evaluation of natural features and areas, and their ecological functions, forms the basis for assessing the effects of a proposed development on the Natural Heritage System (NHS) in an area and its adjacent lands. It is critical to obtain sufficient and accurate information on the existing conditions of natural heritage features and areas, and their ecological functions, to ensure an informed impact assessment for a proposed development or infrastructure project (MNRF, 2010a). Inventory protocols (as outlined below) provide a standard for effectively evaluating the existing abiotic and biotic elements of natural heritage features and areas, and provide field data collected in a consistent manner to inform impact assessment, mitigation, and monitoring for proposed development or infrastructure projects. It may be necessary to use multiple assessment methodologies to capture sufficient data to inform an environmental impact assessment (e.g., Marsh Monitoring auditory surveys and significant wildlife habitat (SWH) visual assessments).

The intention of Data Collection Standards is to ensure that all new information collected for natural heritage studies, uses well-established approaches and formats so that data may be compared between study areas, and may also be entered into regional or provincial databases where available and compared with existing information. The size of the study area should not affect the ability to make comparative evaluations where data is available on a broader (e.g., subwatershed, watershed, regional or provincial) scale. For example, the City of London has subwatershed studies covering most of the City that establish a robust baseline of information from which comparative evaluations can be made.

For some natural heritage features and areas, the level of effort required to determine significance may be made at a landscape level without conducting a detailed site inventories. However, it is typically important to collect targeted information at the landscape, community, and species levels to address the potential for environmental impacts to the NHS.

The specific elements required for the natural heritage inventory and analysis component of a Subject Lands Status Report (SLSR) or an Environmental Impact Study (EIS) will vary depending on the biophysical context, as well as the size, type and location of the proposed development, and the NHS component(s) that may experience negative impacts. Important elements of study for any given SLSR or EIS will be

selected from a detailed list (see **Appendix B**), however not all elements will need to be included in every EIS (refer to **Section 2.5**).

Guidelines for Data Collection

A natural heritage study must be based on data that is considered current (see **Section 2.1.5**) and collected using established protocols and standards, including data collected by the proponent as it informs the analysis, recommendations, and conclusions of the study. Field data reflects the site conditions at the time of collection, however over time conditions on site can change due to a variety of reasons (e.g., vegetation growth, disturbances, and shifts in vegetation community composition). These changes in conditions can affect the accuracy and applicability of the field data. The “shelf life” of field data can vary depending on the type of data, the site, or the surrounding conditions, but generally data is considered current for a period of five years (see **Section 2.1.5**).

Where relatively current data (up to 5 years) is available for the site and meets the City of London’s Data Collection Standards (outlined in this document), it may be applied to meet some of the requirements (e.g., for three- or five-season inventory). However, a minimum of two wildlife and/or ecological site visits are typically required to verify and document current/existing conditions.

The timing of the site visits should be scoped to supplement information gaps, screen for significant, rare and sensitive features and/or species, delineate ecological boundaries, and to identify site-specific impact, mitigation, and management requirements. Where there is older inventory information available (e.g., 6 to 10 years) it will typically need to be verified through current inventory studies. The existing older data (assuming it meets the City of London’s Data Collection Standards) should however be used to supplement current field studies and provide historical context and insights onto population, species, vegetation trends, and / or changes over time. The use of these older data to supplement or replace the need for more current inventory will be evaluated on a case-by-case basis by the City of London.

It is recommended that reputable citizen science data sources (such as iNaturalist and the Ontario Reptile and Amphibian Atlas available at <https://www.ontarioinsects.org/herp/>), be considered when conducting a background review to supplement data obtained by the consultant team.

Inventory Protocols

Multi-season inventories are to be conducted during optimal sampling conditions (e.g., time of year, time of day, appropriate weather conditions) based on the most current and well-established protocols and with sufficient sampling effort, such that data is of sufficient quality to assess or infer the presence and significance of natural heritage features and areas, and their functions.

Optimal sampling conditions and the necessary sampling effort differ among taxa and should be determined based on species-specific protocol recommendations and / or estimates of detection probability. Sampling design should be based on the protocols included in these guidelines or more current and established protocols, if applicable and

available. Typical timeframes for surveys of different taxa, in accordance with established seasonal timing windows, for various, inventory types include, but are not limited to, the following:

- 1. Early Spring (late March/early April)**
 - amphibians
- 2. Spring (late April – May)**
 - amphibians, reptiles, vascular plants, vegetation communities, breeding birds (May)
- 3. Early Summer (June)**
 - amphibians, breeding birds, mammals (including bat acoustic surveys), vascular plants, vegetation communities, aquatic communities and habitat, butterfly and insect monitoring
- 4. Summer (early July/early August)**
 - vegetation communities, significant wildlife habitat, vascular plants, butterflies and insects
- 5. Fall (September-October)**
 - migratory birds, vascular plants, vegetation communities reptiles, mammals, butterflies and insects
- 6. Winter (November-February)**
 - bat leaf off surveys, winter wildlife surveys

An outline of the comprehensive inventory protocols for species occurring in the study area and adjacent lands must be conducted by qualified professionals in the appropriate seasons as described below. When applicable, provincial species-specific protocols should be used to document Species at Risk (SAR). New and emerging techniques not listed below may be considered and / or required as determined in consultation with the City of London and other applicable agencies to ensure robust and accurate inventory results.

1. *Vegetation Communities*

- A survey of vegetation community types should be undertaken during the main growing season, preferably over spring, summer and fall (generally late May to early September).
- Community descriptions should follow the Ecological Land Classification (ELC) for southern Ontario (Lee et al., 1998) to Ecosite or Vegetation Community Type, or contain an equivalent or greater level of structural and floristic detail.
- The report should present both a description of the communities and vegetation maps superimposed on a current air photo at a scale of approximately 1:5000 that also shows topographic contours and watercourses.
- Air photos from within the previous two years (available on the City's website) must be used except where historical air photos are also being shown for reference.

For each vegetation community type the following technical information should be included:

- A full list of vascular plant species present and an indication of their abundance.
- An assessment of soil type(s), drainage regime(s) and moisture regime(s).
- An identification of the ELC Class, Series, Ecosite and, where possible, Vegetation Type (Lee et al., 1998).
- The element ranking for each ELC Vegetation Type (Bakowsky, 1997 or Natural Heritage Information Centre (NHIC) website).
- An annotated assessment of community condition through the calculation of the Floristic Quality Index (FQI) (Oldham et al., 1995) or another current, equivalent community assessment method including the number of native species, number of non-native species, number of conservative species (conservatism coefficient ≥ 7), mean conservatism coefficient of native species, and sum of weediness scores.
- A summary of tree species, with age and / or size class distribution.
- Other indications of community condition and/or ecological function including amount of decayed coarse woody debris.

2. **Vascular Plants**

- A survey of vascular plants should be carried out during April-May for spring ephemerals, June-August to capture summer flowering periods and September-October to capture fall flowering periods. Surveys should have regard for weather variability from year to year.
- Locations of globally, nationally, provincially and regionally rare vascular plant species should be mapped, and the extent of habitat for each species outlined. Recommendations should be made for protection of rare species.
- Nationally rare species are as listed in the NHIC website; species with a global rank (G-rank) for G1 to G3 (Oldham and Brinker, 2009), or with a federal (i.e., listed by COSEWIC) status of Endangered, Threatened, or Special Concern.
- Provincially rare species are those listed with a sub-national rank (S-rank) of S1 to S3 (NHIC website) and provincial SAR in Ontario (Bowman, 1996 and / or as listed by COSSARO).
- Regional rarity status should be assessed using Oldham and Brinker (2009), Oldham (2017), and / or from the best available information.

3. **Breeding birds** – Breeding and migratory bird surveys should be conducted as follows:

- Main breeding season surveys as outlined by Cadman et al., (1998):
 - a minimum of two surveys, at least a ten days apart, between May 24 and July 10.
 - The first survey should take place between May 24 and June 17, and the second between June 15 and July 10.
 - Surveys to occur between 5:00 and 10:00 a.m. for breeding bird survey (Cadman et al., 1998), and / or at the time of day and during weather conditions consistent with the Ontario Breeding Bird Atlas participant's guide (OBBA, 2001).

- Line transects, point counts or a combination of both are acceptable so long as all areas receive coverage (see Bibby et al., 2000 for bird census techniques).
- Where habitat is suitable, dusk and night visits to survey for crepuscular species (e.g., American Woodcock, Common Nighthawk) in accordance with standardized protocols as outlined in OBBA (2001).
- Nocturnal owl surveys usually consist of two surveys in the spring and should be conducted in accordance with the OBBA Standardized Owl Survey Protocol (OBBA, 2002).
- Where suitable, marsh breeding bird surveys should be conducted in accordance with Marsh Breeding Bird Program standard survey techniques (BSC, 2009b).
- Where candidate Raptor Wintering Areas are identified, winter raptor surveys should be conducted to confirm SWH in accordance with the Bird and Bird Habitats: Guidelines for Windpower Projects (MNRF, 2015a; MNRF, 2021).
- Field data (such as breeding evidence, behaviours, SAR occurrences) should be collected and documented in accordance with standard protocols as above, included in mapping (i.e., with notations of rare and/or specialized species overlaid on current aerial photography), and following standard terminology (e.g., codes, symbols; OBBA, 2001; Forest Breeding Bird Survey, 2008).

4. Herpetofauna (Amphibians and Reptiles)

- Surveys for newts and mole salamanders, where required, should be conducted during seasonal migration timing windows (i.e., mid-March to late April) and may include a combination of minnow traps, visual surveys (e.g., carefully flipping suitable cover, observing vernal pool egg masses), pitfall or funnel traps, or fine mesh dip nets may be required as outlined in McLaren et al. (1998). Consultation with local experts and the appropriate provincial agency is recommended for determining the timing (as surveys are highly weather dependent to capture migration) and specific survey techniques to be used based on location, species, etc.
- Surveys to confirm presence of lungless salamanders should take place in spring or fall as outlined in the Joint EMAN / Parks Canada National Monitoring Protocol for Plethodontid Salamanders (Zorn et al., 2004).
- Anuran surveys consist of documenting calls and should be conducted in accordance with the standardized Bird Studies Canada's Marsh Monitoring Program protocol for amphibians (BSC, 2009a). Surveys should be conducted as close to suitable breeding sites as possible (and preferably directly adjacent) and surveyors should record direction, distance, and call codes (BSC, 2009a).
- Observational surveys are required during the spring (between March and June) when amphibians are concentrated around suitable breeding habitat in wetlands and woodlands. (MNRF, 2000b).
- Turtle surveys may consist of nesting surveys (late May to early July) in suitable nesting habitat and / or along gravel shoulders of roads, as well as visual

encounter surveys to detect basking turtles following provincial protocol for Blanding's Turtle (MNRF, 2015b).

- Snake surveys may consist of the following techniques, as required:
 - Visual Encounter Surveys (VES) searches between late April and late June (see Survey Protocol for SAR Snakes, MNRF, 2016).
 - Hibernacula searches including visual encounter surveys to detect basking snakes during the first sunny, warm days in early spring.
 - Cover board surveys may be conducted where appropriate.
 - (Note: Wildlife Scientific Collector's Authorization (under the *Fish and Wildlife Conservation Act*), along with an associated Animal Care Protocol approved by the MNRF Wildlife Care Committee, may be required for any surveys that require handling of snakes).
 - Queensnake (*Regina septemvittata*) surveys along the Thames River may be required and should be conducted in accordance with the standard Survey Protocol for Queensnake in Ontario (MNRF, 2015c).
- Resources for identification of herpetofauna egg and larval stages should be utilized (e.g., <http://www.torontozoo.com/adoptapond/resources>).

5. **Mammals**

- Bats, SAR Bats, and Bat Habitat (SWH): Criteria from the Significant Wildlife Habitat Technical Guide (2000) and the more current Ecoregional SWH Criteria Schedules for Ecoregions 7E (MNRF, 2015a) should be considered to determine bat related SWH. Further, the Survey Protocol for Species at Risk Bats within Treed Habitats (MNRF, 2017b) and Bat and Bat Habitats: Guideline for Wind Power Projects (MNRF, 2011b) documents provide additional information for surveying for bats and associated habitat.
 - Surveys may include bat cavity assessments, exit surveys to confirm presence, and bat acoustic monitoring to determine species composition, etc.
- Other mammals (e.g., deer, badgers, moles): Surveys may be required for other mammal-related SWH or SAR mammals with appropriate methodologies.
- Incidental mammal observations, including scat and tracks, should be recorded and included within reports. Identification resources are useful for determining mammal species present within a study area.
 - Mammal identification and Tracking Guide:
<https://www.forestsontario.ca/wp-content/uploads/2016/04/Mammal-Identification-and-Tracking-Guide.pdf>

6. **Non-target wildlife**

All species incidentally observed or detected during field work (e.g., butterflies/Lepidoptera, dragonflies/Odonata, mammals, birds, herpetofauna) should be identified, recorded and integrated into report findings.

As much information about the incidental wildlife should be recorded as possible including, but not limited to: species, photographic evidence, location, habitat, and behaviour.

Incidental observations can provide insight into the environmental conditions of the site and inform the identification and assessments of candidate SWH.

7. Aquatic communities and habitats

A survey of aquatic communities and habitats should be completed at the most appropriate times for sampling various species over the course of a year and should be completed to supplement data obtained during the background review, if necessary. The scope (i.e., level of detail) and need should be determined based on professional judgement or, where applicable, agency requirements, and presence of current (i.e., within the last five years) data appropriate for the particular level of study. Technical data requirements will be determined in consultation with the City of London and may include, but is not limited to the following:

Fish Community Inventory

- Fish community inventories might not be necessary if current, appropriate data are available and can be obtained from the federal Department of Fisheries and Oceans (DFO), the Province, local Conservation Authorities and / or the City of London.
- If fish community inventories are required, they may need to be scoped with the appropriate regulatory agency (e.g., DFO, the Province) depending on project requirements.
- Assuming fish community inventories are required, presence / absence surveys should be conducted using sampling equipment appropriate to the water features, time of year, and (if appropriate) species / type of fish targeted (e.g., seine, minnow traps and electrofishing).
- Dependent upon project and/or agency requirements, detailed data and analysis might be required. Data gathering and analysis might include the following:
 - Index of Biotic Integrity (IBI; Steedman, 1988), and/or
 - Ontario Stream Assessment Protocol (MNRF, 2017c)

Benthic Survey

- Typically includes qualitative and quantitative sampling of benthic macroinvertebrates.
- Scope and specific data analysis tools should be determined on a project specific basis.
 - For example: Ontario Benthos Biomonitoring Network Protocol Manual (Jones et al., 2007), Canadian Aquatic Biomonitoring Network (Environment Canada, 2012).

Habitat Assessment and Stream Analysis

Dependent upon project and/or agency requirements, watercourse analysis might be required such as:

- Target Habitat Suitability Index (I) (habitat models developed for specific target species)
- Water chemistry (e.g., dissolved oxygen, temperature, pH, conductivity)
- Watercourse morphology (e.g., bankfull width, depth, stream order)
- Watercourse substrate composition
- Riparian (e.g., within 30 m of the bank or as per mandated project-specific protocol) and in-water cover
- Headwater Drainage Feature (HDF) assessment completed in accordance with the *Evaluation, Classification and Management of Headwater Drainage Feature Guidelines* (TRCA and CVC, 2014) or other current industry standards.
- Broader habitat assessment (i.e., beyond the immediate riparian area)

8. Significant Wildlife Habitat (SWH):

- All potential candidate SWH types should be screened for using current accepted methodologies.
- SWH surveys should be consistent with the current Significant Wildlife Habitat Technical Guide (MNRF, 2000b), Significant Wildlife Habitat Mitigation Support Tool (MNRF, 2014), and the most current Ministry SWH Criteria Schedules for Ecoregion 7E (MNRF, 2015a).
- SWH assessments should also be consistent with additional considerations outlined in ***The London Plan – Policies 1352 to 1355***.

9. Regionally Rare Species

Assessments of regionally rare species should include consideration of presence absence, population size, habitat, and any other pertinent information (e.g., nesting areas, dens, etc.) and be included in project-specific mapping as appropriate to inform the significance of the site for all regionally rare species.

Regional status for Middlesex County should be assessed based on the best available information including, but not limited to:

- mammals (Dobbyn, 1994)
- breeding birds (OBBA, 2007; current atlas updates; Partners in Flight, 2020)
- butterflies (Holmes et al., 1991; Toronto Entomologists' Association, 2018)
- damselflies and dragonflies
- herpetofauna (Oldham and Weller, 2000; Oldham, 2003; Ontario Nature, 2019)
- vegetation communities (NHIC website) and vascular plants (Oldham, 2017)

10. Species at Risk (SAR)

If potential suitable habitat for SAR (as listed in O. Reg. 230/08: *Species at Risk in Ontario List*) is encountered and is not covered in the above inventory protocols, provincial species-specific protocols (<https://www.ontario.ca/page/species-risk-guides-and-resources>) should be used.

Targeted surveys may be required based on the presence of suitable habitat, confirmed sightings, along with the potential impacts associated with a given development or infrastructure project.

Appendix D

Significant Woodland Evaluation Form

Appendix D: Significant Woodland Evaluation Scoring Form

The following Significant Woodland Evaluation Scoring Form is provided to facilitate woodland feature evaluation and to provide a consistent and transparent screening methodology.

Additional information and guidance in Section 3.1.2 of the EMG, Figure 3.1 and Section 8 (Glossary) must be reviewed to apply the following criteria.

These more specific and technical criteria have been developed to implement the broader criteria for determining woodland significance in *The London Plan* cited below.

They have been developed with careful consideration for London's biophysical and planning context, the current and applicable provincial policies and guidance, and applied technical information and science considered applicable to London.

The London Plan – Criterion 1341_1.

The woodland contains natural features and ecological functions that are important to the environmental quality and integrity of the NHS. These include site protection (hydrology and erosion/ slope) and landscape integrity (richness, connectivity and distribution).

The London Plan – Criterion 1341_2.

The woodland provides important ecological functions and has an age, size, site quality, and diversity of biological communities and associated species that is uncommon for the planning area.

The London Plan – Criterion 1341_4.

The woodland provides significant habitat for endangered or threatened species.

The London Plan – Criterion 1341_5.

The woodland contains distinctive, unusual or high-quality natural communities or landforms.

Consistent with *The London Plan* a woodland will be considered significant if it meets either of the following evaluation scores:

- If one or more criteria meet the standard for High; or
- If five or more criteria meet the standard for Medium.

CRITERIA	MEASURES			SCORE
Criterion 1.1. – Site Protection	A) Presence of hydrological features within or contiguous with the woodland feature.	<p>HIGH – At least one (1) hydrological feature (as described in the EMG for this criterion) located within or contiguous with the woodland feature.</p>	<p>MEDIUM – The woodland feature is within 50 m of at least one (1) hydrological feature (as described in the EMG for this criterion).</p>	<p>LOW – No hydrological features present within 50 m of the woodland feature.</p>
	B) Erosion and Slope Protection	<p>HIGH – The woodland feature is present on steep slopes greater than 25% of any soil type, OR on a remnant slope associated with other features such as moraines or remnant valley slopes no longer continuous with the river system OR on moderate to steep slopes between 11% and 25% with erodible soils (silty loam, sandy loam and loam, fine to coarse sands).</p>	<p>MEDIUM – The woodland feature is present on moderate to steep slopes between 11% and 25% with less erodible soils (heavy clay and clay, silty clay).</p>	<p>LOW – The woodland feature is present on gentle slopes of 10% or less with any soil type.</p>
Score for Criterion 1.1 is based on the highest standard achieved between the two measures.				
Criterion 1.2. – Landscape Integrity (Richness, Connectivity)	A) Landscape Richness	<p>HIGH – More than 10% Natural Heritage System (NHS) cover within 2 km of the woodland feature.</p>	<p>MEDIUM – Between 7% and 10% Natural Heritage System (NHS) cover within 2 km of the woodland feature.</p>	<p>LOW – Less than 7% Natural Heritage System (NHS) cover within 2 km of the woodland feature.</p>

CRITERIA	MEASURES	SCORE
<p>and Distribution)</p> <p>B) Landscape Connectivity (linkage and distance between Natural Heritage System (NHS) Features not separated by permanent cultural barriers).</p>	<p>HIGH – The woodland feature is directly connected by:</p> <ul style="list-style-type: none"> i. waterways or riparian habitat (generally primary or secondary aquatic corridors and streams with bridges and/or underpasses: for example, Thames, Dingman, Medway, Stoney, Pottersburg, Kettle, Dodd, Sharon, Oxbow, Kelly, Stanton, Mud, Crumlin); and / or ii. One or more confirmed NHS Feature. <p>MEDIUM – The woodland feature is indirectly connected to other NHS features by habitat gaps less than 40 m consisting of:</p> <ul style="list-style-type: none"> i. Any Natural Heritage Feature(s) or Area(s);; ii. Abandoned rails, utility rights-of-way (hydro corridors, water/gas pipeline); iii. Open space greenways and golf courses; iv. Active agriculture or pasture; v. Watercourses connected by culverts; and / or vi. First or second order streams that exhibit channelized morphology. <p>LOW – The woodland feature is not connected to other NHS features due to the presence of permanent cultural barriers greater than 40 m consisting of:</p> <ul style="list-style-type: none"> i. major roads and highways with no culverts providing connectivity; ii. urban or industrial development, large parking lots; iii. infrastructure; iv. dams, buried watercourses, channelized third or greater order watercourses; and / or v. active recreational land-uses (e.g., campground, parks with major facilities – community centres, arenas). 	

CRITERIA	MEASURES			SCORE
C) Woodland Feature Distribution (isolation and arrangement of woodland features / feature clusters).	<p>HIGH – The woodland feature clusters have a total area of more than 40 ha within 250 m of the woodland feature.</p>	<p>MEDIUM – The woodland feature clusters have a total area between 20 and 40 ha within 250 m of the woodland feature.</p>	<p>LOW – The woodland feature clusters have a total area less than 20 ha within 250 m of the woodland feature.</p>	
Score Criterion 1.2 based on the highest standard achieved for any one of the three standards.				
Criterion 2.1 – Age and Site Quality	A) Community Successional Stage / Seral Age (see terms defined in Section 8)	<p>HIGH – The woodland feature contains one (1) or more mature or older growth communities.</p>	<p>MEDIUM – The woodland feature contains one (1) or more mid-aged communities.</p>	<p>LOW – The woodland feature contains only pioneer to young communities.</p>
	B) Mean Coefficient of Conservatism (MCC) of Woodland Feature	<p>HIGH – One (1) or more vegetation (ELC) community with an MCC ≥ 4.6; OR MCC of woodland feature > 4.5</p>	<p>MEDIUM – One (1) or more vegetation (ELC) community with an MCC 4.2 to 4.5; OR MCC of woodland feature $\geq 4.0 - 4.5$</p>	<p>LOW – All vegetation (ELC) communities with an MCC < 4.2; OR MCC of woodland feature < 4.0.</p>
Score Criterion 2.1 based on the highest standard achieved between the two measures.				
Criterion 2.2 – Size and Shape	A) Woodland Feature Size	<p>HIGH – The woodland feature greater than 4.0 ha.</p>	<p>MEDIUM – The woodland feature between 2.0 and -4.0 ha.</p>	<p>LOW – The woodland feature less than 2.0 ha.</p>

CRITERIA	MEASURES	SCORE		
B) Woodland Feature Shape and Presence of Interior	HIGH The presence of any interior habitat (measured at more than 100 m from the feature edge) in a woodland patch will add one HIGH score to the overall assessment..			
C) Bird Species Associated with Woodland Feature	HIGH – The woodland feature provides breeding habitat for any three (3) or more bird species of conservation concern, including provincially rare bird species (MNRF 2015a).	MEDIUM – The woodland feature provides breeding habitat for one (1) or two (2) bird species of conservation concern, including provincially rare bird species (MNRF 2015a).		
		LOW – The woodland feature does not provide breeding habitat for any bird species of conservation concern, including provincially rare bird species (MNRF 2015a).		
Score Criterion 2.2 based on the highest standard achieved for any one of the three standards.				
Criterion 2.3 Diversity of Communities, Landforms and Associated Species	A) ELC Community Diversity within Woodland Feature	HIGH – The woodland feature contains 6 or more ELC Community Series.	MEDIUM – The woodland feature contains 3 to 5 ELC Community Series.	LOW – The woodland feature contains 1 or 2 ELC Community Series.

CRITERIA	MEASURES	SCORE
B) Community and Topographic Diversity (variation and heterogeneity) within Woodland Feature	<p>HIGH – The woodland feature contains three (3) or more Ecosites in one (1) Community Series OR four (4) or more Vegetation Types OR three (3) or more topographic features (e.g. tableland, rolling upland, valley slope, terrace, bottomland).</p> <p>MEDIUM – The woodland feature contains two (2) or more Ecosites in one Community Series OR by three (3) Vegetation Types OR two (2) topographic features, or one (1) Vegetation Type with inclusions (as defined in Section 8).</p> <p>LOW – The woodland feature is relatively homogenous and contains one (1) Ecosite OR one (1) to two (2) Vegetation Types on one (1) topographic feature.</p>	
C) Diversity (species and individuals) and Critical Habitat Components for Amphibians within Woodland Feature	<p>HIGH – Three (3) or more species of amphibians present, OR one (1) species of amphibian that is abundant in one (1) or more communities; OR two (2) or more critical habitat components present in the woodland feature.</p> <p>MEDIUM – One (1) or two (2) species of amphibians present; OR one (1) species of amphibian that is occasional* in one (1) or more communities; OR one (1) critical habitat components present in the woodland feature.</p> <p>LOW – No species of amphibian present, OR no critical habitat components present in the woodland feature.</p>	
D) Presence of Conifer Cover within Woodland Feature	<p>HIGH – The woodland feature contains one or more conifer communities that are greater than 4.0 ha in size.</p> <p>MEDIUM – The woodland feature contains one or more conifer communities that are between 2.0 and 4.0 ha in size.</p> <p>LOW – The woodland feature contains conifer communities less than 2.0 ha in size.</p>	

CRITERIA	MEASURES				SCORE
	E) Fish Habitat Quality within Woodland Feature	HIGH – Dissolved oxygen greater than 8.0 mg/L OR abundant instream woody debris and rocks and watercourse with a natural channel located within or contiguous with the woodland feature.	MEDIUM – Dissolved oxygen between 5.0 and 8.0 mg/L OR moderate amount of instream woody debris and rocks and portions of channelized watercourses within or contiguous with the woodland feature.	LOW – Dissolved oxygen less than 5.0 mg/L OR no instream woody debris and sparse structure and entire watercourse channelized within or contiguous with the woodland feature.	
Score for Criterion 2.3 based on the highest standard achieved for any one of the five standards.					
Criterion 4.1 – Significant habitat for endangered or threatened species.	A) Species at Risk (SAR) Habitat associated with Woodland Feature	HIGH – The presence of SAR habitat identified for protection in accordance with provincial and federal requirements will add one HIGH score to the overall assessment.			
The presence of SAR habitat will add one HIGH score to the overall assessment					
Criterion 5.1 – Distinctive, unusual or high-quality communities.	A) ELC Community SRANK within the Woodland Feature	HIGH – One (1) or more communities with an SRANK of S3 or lower.	MEDIUM – No communities with an SRANK lower than S4.	LOW – No communities with an SRANK lower than S5.	
B) Significant Wildlife Habitat within the Woodland Feature					
The presence of SWH habitat will add one HIGH score to the overall assessment					

CRITERIA	<u>MEASURES</u>			SCORE
C) Rare Plant Species Presence / Absence within the Woodland Feature	HIGH – At least one (1) provincially rare plant (S1-S3) or four (4) Regionally Rare plants	MEDIUM – One (1) to three (-3) regionally rare plant(s)	LOW – No rare plants.	
	D) Size and distribution of trees within the Woodland Feature	HIGH – Trees more than 50 cm dbh abundant in one or more communities within the woodland feature.	MEDIUM – Trees more than 50 cm dbh rare or occasional in one or more communities within the woodland feature.	LOW – Trees more than 50 cm dbh not present in any communities within the woodland feature.
Score for Criterion 5.1 based on the highest standard achieved for any one of the five standards				
Criterion 5.2 – Distinctive, Unusual or High-Quality Landforms	A) Distinctive landform types associated with the Woodland Feature	HIGH – The woodland feature located on a landform identified by an Earth Science ANSI OR on the Beach Ridge or Sand Plain physiographic landform units.	MEDIUM – The woodland feature located on the Till Plain or Till Moraine physiographic landform unit.	LOW – The woodland feature is located on the Spillway physiographic landform unit.
Score for Criterion 5.2 based on the highest standard achieved.				
Woodland Evaluation Score				
Significant Woodland				Yes/No

* Criterion 2.3 (C) Note: Abundance is based on call codes from the amphibian survey protocol as part of the Marsh Monitoring Program (Bird Studies Canada, 2009a). Presence is determined with a call code ≥ 1 ; occasional is defined as any species with a call code 2; abundant is defined as any species with a call code 3.

Appendix E

Impact Assessment and Net Effects Table Template

APPENDIX E - Impact Assessment and Net Effects Table Template

Through the EIS, all anticipated negative impacts should be addressed through a combination of avoidance, mitigation and compensation measures as appropriate so that the net effects are either neutral (i.e., No Net Effect = no measurable impact to the NHS is anticipated) or positive (i.e., Positive Net Effect = there is a gain in the areal extent and / or improvement to the quality of one or more NHS feature / area identified for inclusion within the NHS).

Examples of direct and indirect impacts are italicized. These are only examples and do not provide the full extent of potential impacts. Each project will require consideration of project and site-specific potential impacts.

SOURCE OF IMPACT	POTENTIAL AREAS AFFECTED & POTENTIAL EFFECTS	RECOMMENDED AVOIDANCE, MITIGATION, COMPENSATION	NET EFFECTS & RATIONALE
1.0 Existing Conditions (where opportunities for net positive effects have been identified):			
1.1 <i>Loss of gravel from the roadway shoulder</i>	<i>Cultural meadow (CUM) – Increased surface water runoff to the cultural meadow causing flooding, thus, reducing the viability of the habitat for various species using the habitat.</i>	Regrade the roadway shoulder replace gravel and enhance with hydroseeding of a native seed mix to stabilize edge and encourage infiltration.	<u>(+) NET POSITIVE EFFECT</u> Regrading the roadway shoulder will reduce surface runoff and promote infiltration and minimize flooding into the cultural meadow.

SOURCE OF IMPACT	POTENTIAL AREAS AFFECTED & POTENTIAL EFFECTS	RECOMMENDED AVOIDANCE, MITIGATION, COMPENSATION	NET EFFECTS & RATIONALE
1.2 Invasive weed (buckthorn) growth in forest understorey –	<i>Deciduous forest (FOD) - Reduced plant species diversity due to competition from invasive weeds</i>	<i>Prepare and implement an Invasive Weed Management Plan to selectively remove buckthorn</i>	<u>(+) NET POSITIVE EFFECT</u> <i>Removal of invasive plants allows for native plants to colonize and increase diversity</i>
1.3 ...			
2.0 Direct Impacts:			
Planning & Engineering Design			
2.1 Housing development lots encroaching on forest community	<i>Deciduous forest (FOD) - Removal of native vegetation within a small portion of deciduous forest along edge of the study area resulting in loss of habitat for forest birds and other wildlife.</i>	<ol style="list-style-type: none"> 1) Re-design development plan to avoid loss of forest; and establish an Ecological Buffer with native plantings 2) Compensate for loss of forest habitat by filling in bays and other areas adjacent to the forest, increasing core habitat; and establish an Ecological Buffer with native plantings. 3) Proposed rear lot fencing to include no gates. 	<p><u>(+) NET POSITIVE EFFECT</u> <i>The planting of native plant species within the Ecological Buffer will provide additional wildlife habitat</i></p> <p><u>NO NET EFFECT, OR (+) NET POSITIVE EFFECT</u> <i>Compensation may only provide equal habitat or it may provide a net environmental benefit.</i></p>

SOURCE OF IMPACT	POTENTIAL AREAS AFFECTED & POTENTIAL EFFECTS	RECOMMENDED AVOIDANCE, MITIGATION, COMPENSATION	NET EFFECTS & RATIONALE
2.2 Widening of an existing roadway (additional lanes & services)	<i>Cultural meadow (CUM) – Loss of breeding and foraging habitat for Bobolink</i>	<i>Consult with the Province to determine permitting requirements.</i> <i>Identify and secure additional lands to provide for compensation of habitat loss.</i> <i>Plant compensation areas with native meadow seed mix.</i> <i>Develop plan for long-term management.</i>	<u>(+) NET POSITIVE EFFECT</u> <i>The planting of native plant species within the Ecological Buffer will provide additional wildlife habitat</i>
2.3 ...			
Construction			
2.4 Construction vehicle traffic	<i>Wildlife from adjacent wetland, meadow marsh (MAM) and open aquatic (OAO) habitat – Injury or mortality to wildlife</i>	<i>Avoid injury and mortality by preparing and implementing a Wildlife Handling Protocol, providing wildlife posters for construction trailer, and training construction crews.</i>	<u>NO NET EFFECT</u> <i>Potential impacts to wildlife can be avoided with appropriate protocols and training.</i>
2.5 ...			
3.0 Indirect Impacts:			
Planning & Engineering Design			

SOURCE OF IMPACT	POTENTIAL AREAS AFFECTED & POTENTIAL EFFECTS	RECOMMENDED AVOIDANCE, MITIGATION, COMPENSATION	NET EFFECTS & RATIONALE
3.1 Development plan increase in imperious surfaces; Stormwater management system	<i>Moist deciduous forest (FOD) and skunk cabbage population – Reduction in groundwater discharge due to loss of infiltration.</i> <i>Die-back and reduction of groundwater dependent skunk cabbage population.</i>	<i>Re-design development plan to reduce impervious surfaces.</i> <i>Provide greater infiltration through use of best management practises, infiltration trenches, etc.</i>	<u>NO NET EFFECT</u> <i>Potential impacts to groundwater dependent plant populations (i.e. skunk cabbage) can be mitigated through the use of appropriate stormwater management measures.</i>
3.2 ...			
Construction			
3.3 Construction related runoff	<i>Adjacent watercourse and swamp thicket (SWT) – Sedimentation in watercourse covering spawning habitat and or fish eggs. Habitat loss and / or reduction of fish population.</i>	<i>Installation of sediment control fencing.</i> <i>Regular monitoring of fencing and other protection measures.</i>	<u>NO NET EFFECT</u> <i>Proper installation of sediment control fencing can prevent deposition of fill and sedimentation. No changes to site drainage.</i>
3.4 ...			