

September 24, 2024 MTE File No.: 54969-100

Development Services City of London 300 Dufferin Avenue London, ON N6A 4L9

Attention: Development Services

# RE: Preliminary Site Stormwater Servicing and Stormwater Management (SWM) Brief Residential Development

### 325 Southdale Road East, London, Ontario

This brief has been prepared to outline site servicing and Stormwater Management (SWM) strategies based on the City of London's (City) requirements and existing infrastructure in the vicinity of the subject lands at 325 Southdale Road East.

# **1.0 INTRODUCTION**

MTE was retained by Sam Singh (client) to complete a preliminary Site Servicing Brief in support of a Zoning By-law Amendment (ZBA) of the above noted property.

The lands subject to the future ZBA application (the 'Site') and measures approximately 0.20 ha. The site is located approximately 80m east from the intersection of Wellington Road South and White Oak Road. The existing site is currently a single family residential unit and is bounded by residential development to the east (town house development), west, and south, and Southdale Road East to the north. The residential property to the south (3046 White Oak Rd) is currently a grassed area since the previous house has been demolished. MTE cannot confirm at this moment if that indicates potential development of that property in the near future.

The Conceptual Development Plan by Zelinka Priamo Ltd. (ZPL) proposes a 3-storey, 10-unit residential building with an associated driveway (access to Southdale Road East), surface parking, amenity area and landscaped area. The conceptual development plan (by ZPL) is attached to this brief.

# 2.0 STORMWATER MANAGEMENT AND STORM SERVICING

The preliminary Stormwater Management (SWM) strategy prepared in support of the proposed ZBA applications is presented below. More detailed information will be prepared during the detailed design stage of the site plan approval process.

#### **2.1 Existing Conditions**

Presently, the site is comprised of one house, two sheds at the back of the property, an asphalt driveway, concrete walkway, and a grassed/landscaped area. Based on the City of London Design Specifications and Requirements Manual, January 2024 (DS & RM), single family residential development is accounted for in the design of a storm sewer system with a runoff coefficient of 0.5.

A topographic survey of the site is not currently available. The current stormwater drainage is presented on the existing conditions sketch with one-meter contours. As shown on **Sketch 1** attached, the entire property drains to the east toward the neighbouring townhouse development. The front of the property ultimately drains to Southdale Road East R.O.W. The back of the property drains to the southeast toward the neighboring property at 3046 White Oak Rd. It is estimated based on the available contours that the site elevations are between 272.2 and 271.4. In addition, **Sketch 1** shows that there may be external flows from the property to the west.

Note that the site detailed existing conditions assessment will be provided during the detailed design (topographic survey will be available at that time).

#### 2.2 Allowable Site Storm Flow

As discussed above, a portion of the subject site drains to Southdale Road East R.O.W. However, the City Record Drawing 5892 shows that the site is not tributary to the existing 250mm storm sewer on Southdale Road East, which was only intended to convey road runoff. Therefore, outletting runoff from the site to the existing 250mm storm sewer on Southdale Road East is not an option.

As per the attached City Record Drawing 31122 (Storm Sewer Design Sheet and Drainage), the site (at C = 0.65) is tributary to the existing storm sewer system on White Oak Road. As shown on the attached Dwg. 31122, the site is part of a tributary area, identified as drainage Area EX6, with a total area of 3.73, C=0.65 and Tc =14.13 min. The same record drawing shows that the 1650mm storm sewer from the storm MH 9X578 to the existing STMH is designed to convey the 250-year storm event from Catchment EX6. However, this information is to be confirmed with the City during the detailed design. As presented in the attached SWM calculations, the total allowable flow from the site was calculated to be 32.44 L/s during the 5-year storm and 55.86 L/s during the 100-year storm event.

More details regarding stormwater servicing through the White Oak Road storm system is provided below.

### **2.3 Proposed Conditions**

As presented on the conceptual development plan (by ZPL) attached to this brief, the proposed development is comprised of the following: 3-storey residential building (footprint approximately 301 m<sup>2</sup>), concrete/asphalt area (922.4 m<sup>2</sup>), and landscaped/grassed area (776.6 m<sup>2</sup>). As shown in the attached SWM calculations, the post-development composite runoff coefficient ('C') was calculated to be 0.63. which is less than the allowable 'C' coefficient.

It is important to note that the post-development 'C' is slightly lower than the allowable 'C'. Therefore, there will be no storage requirements. MTE understands from the note on record Dwg. 31122 that major flows from the site could be conveyed through the storm sewer. However, that information is to be confirmed with the City of London during the detailed design.

#### Preliminary SWM Strategy - Option 1

The City provided the following comment in the Pre-Application Consultation, dated February 24, 2024: "Alternatively, as per the Drainage By-Law, section 5.2, where no storm sewer is accessible the applicant shall provide a dry well or storm water retention system which is certified by a Professional Engineer to the satisfaction of the City Engineer. Any proposed LID solution should be supported by a Geotechnical Report and/or hydrogeological investigations prepared with focus on the type of soil, its infiltration rate, hydraulic conductivity (under field saturated conditions), and seasonal high ground water elevation". It is understood that drywells are to be sized to infiltrate runoff from a 25mm storm event, runoff in excess of this depth may make use of the existing drainage patterns provided the flow rates do not exceed the allowable flow rates for the site.

MTE assessed the option of infiltrating stormwater from the subject site. The infiltration features will be designed by taking into consideration site specific factors such as soil conditions including permeability/infiltration rate, groundwater table (GW), proposed development layout (spatial constraints) and grading. The infiltration and Low Impact Development (LID) requirements as per Ministry of Environment, Conservation and Parks (MECP) and Ontario Building Code (OBC) are as follows:

- Infiltration rate of native soil should be minimum 15 mm/hour (MECP).
- Separation between the bottom of the infiltration facility and impervious soils should be minimum 1 m (MECP).
- Separation between the bottom of the infiltration facility and groundwater (GW) should be minimum 1 m (MECP).
- Separation between the edge of the infiltration facility and any building should be minimum 4 m (MECP).
- Separation between the edge of the infiltration facility and any building should be minimum 5 m (OBC).

MTE was provided by Geotechnical Investigation by EXP Services Inc., dated August 21, 2023. MTE's review of the geotechnical investigation indicates that the GW on the site varies from 4.5 m to 5.3 m below ground level (bgs). Table 7 of the geotechnical investigation shows unfactored infiltration rate for the BH5 at the depth of 3.1 m bgs of 138 mm/hr (55 mm/hr with 2.5 safety factor), which is very good for the infiltration.

Based on the proposed development and minimum 4m separation from the building, the infiltration facility should be located in the vicinity to BH5. Therefore, BH5 is the most relevant for the MTE assessment of the Infiltration /LID feasibility for the site.

Unfortunately, BH5 was terminated at the 3.5m bgs, so the critical information such as groundwater elevation and the depth of the sand soil layer are missing. However, based on the information obtained from the other four boreholes, it is expected that the sand layer is underlain by a layer of silt which is then underlain by more sand, and the groundwater is approximately 4.5m below grade.

Based on MTE's assessment, the site stormwater infiltration (infiltration galleries and/or different LID features based on infiltration) is a feasible option if the following assumptions are correct:

- The Sand Soil Layer at 1m deep (or higher), ends at last at 4.1 m bgs (to be confirmed prior detail design).
- The GW is at least 4.1 m bgs or deeper (to be confirmed prior detail design).

It is anticipated that infiltration storage would be provided via stone galleries or subsurface storage chambers. The type of the infiltration features and their layout will be provided during the detailed design.

Potential area for infiltration (based on spatial constraints) is highlighted in green on the conceptual development plan (by ZPL) attached to this brief.

#### Preliminary SWM Strategy - Option 2

Option 2a considered that the site storm servicing will be provided by conveying storm flows to the existing 300mm storm sewer on Southdale Road East, while option 2b considered that the site storm servicing will be provided by conveying storm flows to the existing 2,250mm storm sewer located in the easement just north of the Southdale Road East R.O.W. Options 3a and 3b are presented on Sketch 3, attached to this brief.

**Option 2a.** City Record Drawing 5892 shows that the site is not tributary to the existing 250mm / 300mm storm sewer on Southdale Road East, which only conveys road runoff, and the original design of the sewers did not account for this proposed development. Drawing 5892 also shows that the 300mm storm sewer outlets to the 2,250mm storm sewer.

Our review of the storm sewer information provided on the City's Locates Map and City Record Drawing 5888 indicates that the slopes provided in the storm sewer deign sheet (Dwg. 5892) are not correct. In addition, Mannings 'n' values shown on the storm design sheet are 0.015. Attached below, Dwg. 5892 (updated [marked in red] by MTE for correct slope and n=0.013) shows that there is approximately 24 L/s (the worst case) of available storm capacity in the 300mm storm sewer.

As shown on the attached Sketch 3, option 2a considered that storm flows are controlled on-site to the flow of 24 L/s and conveyed to the existing MH7X105 on Southdale Road East, and further to the existing 2,250mm storm sewer via an existing 300mm storm sewer. Option 2a assumes that the existing 2,250mm storm sewer has capacity for the additional storm flows of 24 L/s from the subject site.

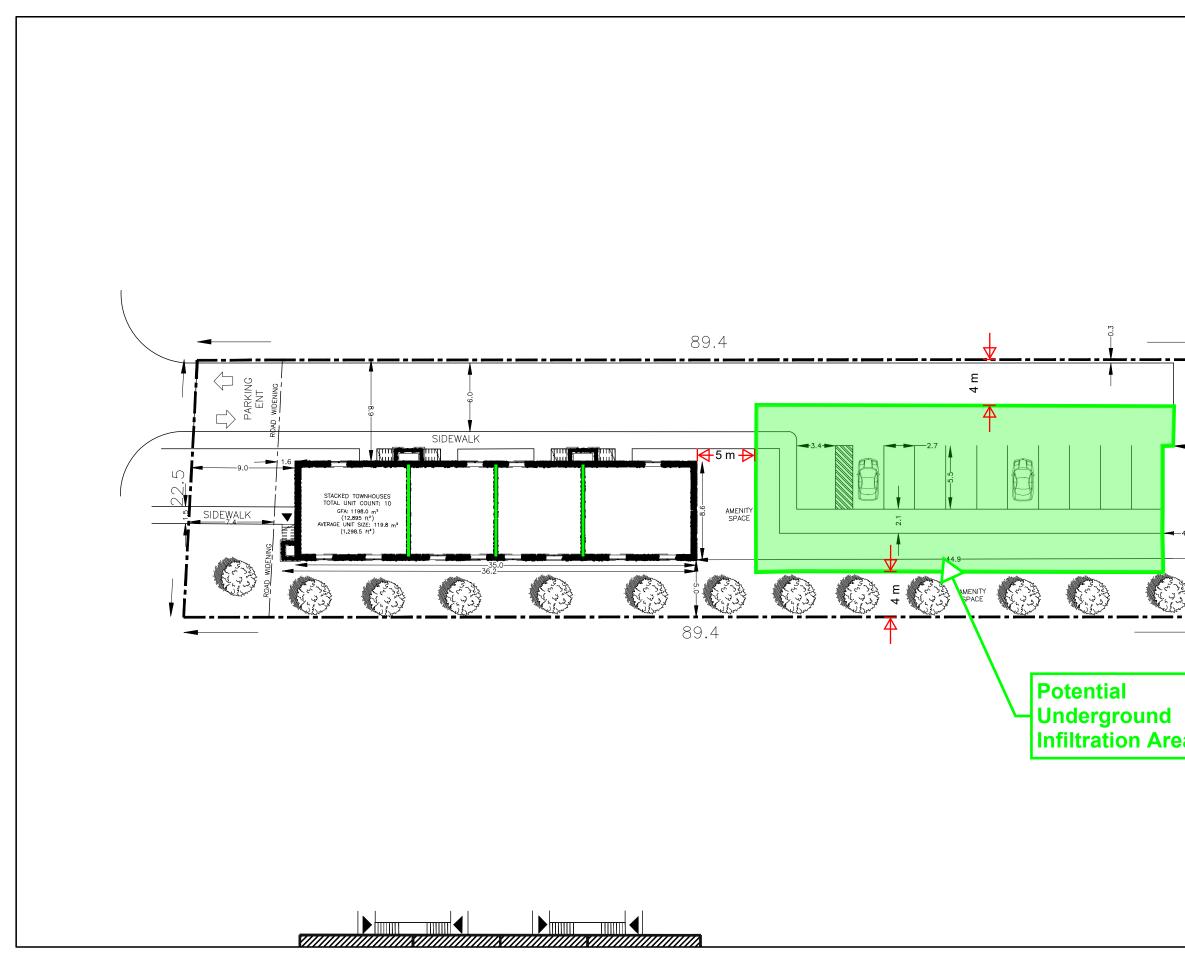
As shown on the attached Sketch 3, there is a crossing conflict between the future storm servicing and existing 300mm ductile iron watermain (WM). This conflict can be resolved by offsetting the existing 300mm WM.

The preliminary storm servicing schematic on Sketch 3 was prepared for general presentation purposes. Detailed storm servicing drawings and calculations will be provided during the detailed design (SPA process).

**Option 2b**. Option 2b considered that storm flows are controlled on-site to the flow of approximately 32 L/s (C=0.65 and Tc = 14 min) and conveyed to the existing 2,250mm storm sewer. Option 3b assumes that the existing 2,250mm storm sewer has capacity for the additional storm flows from the subject site.

As shown on the attached Sketch 3, there are no crossing conflicts between future storm servicing and existing sanitary and water servicing. The preliminary storm servicing schematic on Sketch 3 was prepared for general presentation purposes. Detailed storm servicing drawings and calculations will be provided during the detailed design (SPA process).

# **3.0 CONCLUSIONS**


Based on the preliminary information and analysis, it is feasible to provide stormwater servicing for the proposed development in accordance with the City of London, UTRCA and MECP requirements.

Please contact us should you have any comments or questions,



Joshua Monster, P.Eng. Technical Practice Leader 519-204-6510 ext. 2202 jmonster@mte85.com

JJM:azp M:\54969\100\Preliminary Report\54969-100 Preliminary Storm Servicing Brief\_April 5\_24.docx



|              | KEY PLAN<br>SUBJECT LANDS                                                                                                                                                                                                                                                                                                                                            |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              | CONCEPT PLAN<br>CON 2 PT LOT 30                                                                                                                                                                                                                                                                                                                                      |
|              | CITY OF LONDON                                                                                                                                                                                                                                                                                                                                                       |
|              | EXISTING ZONE: R3-3<br>PROPOSED ZONE: R5-6                                                                                                                                                                                                                                                                                                                           |
| 22.5<br>22.5 | REQUIREDPROPOSEDLOT AREA1000 m² 1994 m²LOT FRONTAGE30 m 22.4 m*LOT DEPTHN/A 89.3 mBUILDING DEPTH(S)N/A 35.0 mFRONT YARD SETBACK (FYS) 8.0 m 9.0 mFYS (POST ROAD WDENING)8.0 m 1.6 m*REAR YARD SETBACK5.6 m 44.9 mINT. SIDEYARD (E)5.6 m 5.0 m*LANDSCAPED AREA30% 49%LOT COVERAGE45% 15%HEIGHT12.0 m 11.3 mPARKING5 11DESNITY (MAX)50 UPH*SPECIAL REGULATION REQUIRED |
| ea           | NO. REVISION DATE INITIAL                                                                                                                                                                                                                                                                                                                                            |
|              | SINGH, SAM                                                                                                                                                                                                                                                                                                                                                           |
|              | 325 SOUTHDALE ROAD                                                                                                                                                                                                                                                                                                                                                   |
|              | ZELINKA PRIAMO LTD<br>A Robertonal Ranchy Rottine<br>318 Wellington Road, London, Ontario N6C 4P4                                                                                                                                                                                                                                                                    |
|              | Tel: (519) 474-7137 Fax: (519) 474-2284 e-mail: zp@zpplan.com<br>DRAWN BY PROJECT NO. BC SNG/LON/19-05                                                                                                                                                                                                                                                               |
|              | DATE APRIL 2024 SCALE N.T.S                                                                                                                                                                                                                                                                                                                                          |





# Preliminary SWM Calculations

| DATE:<br>JOB NO.: | September 23, 2024<br>42024-509      |
|-------------------|--------------------------------------|
| Client:           | Sam Singh                            |
| Project:          | Proposed Residential Development     |
| Location:         | 325 Southside Road East, London, ON. |

# ALLOWABLE FLOWS

### CATCHMENT EXT6

| Total Area:      | 3.730  | На  |
|------------------|--------|-----|
| C' Coefficient = | 0.65   |     |
| Tc=              | 14.070 | min |

#### Catchement EX6 5-Year Flows

| C =                                        | 0.65   |       |
|--------------------------------------------|--------|-------|
| Time to concentration $t_c =$              | 14.070 | min   |
| Intensity, i (@ $t_c$ ) =                  |        | mm/hr |
| 2-Year Flow, Q <sub>r</sub> = 2.78*C*i*A = | 605.04 | l/s   |

#### Catchement EX6 100-Year Flows

| C =                                        | 0.65    |       |
|--------------------------------------------|---------|-------|
| Time to concentration $t_c =$              | 14.070  | min   |
| Intensity, i (@ $t_c$ ) =                  | 154.55  | mm/hr |
| 2-Year Flow, $Q_r = 2.78 \text{ *C*i*A} =$ | 1041.70 | l/s   |

#### CITY OF LONDON-3 CHICAGO RAINFALL DISTRIBUTION PARAMETERS\*

| Return Period (years) |                        | A,B,C P |
|-----------------------|------------------------|---------|
| <b>v</b> ,            | A                      |         |
| 25mm                  | 538.85                 |         |
| 2                     | 754.360                |         |
| 5                     | 1183.74                |         |
| 10                    | 1574.382               |         |
| 25                    | 2019.372               |         |
| 50                    | 2270.665               |         |
| 100                   | 2619.363               |         |
| 250                   | 3048.220               |         |
|                       | *Intensity i=A/(t+B)^C | (mm/hr) |
|                       |                        |         |

\* Refer to the City of London Design Specification & Requirments Manual (DS&RM), Section 6.

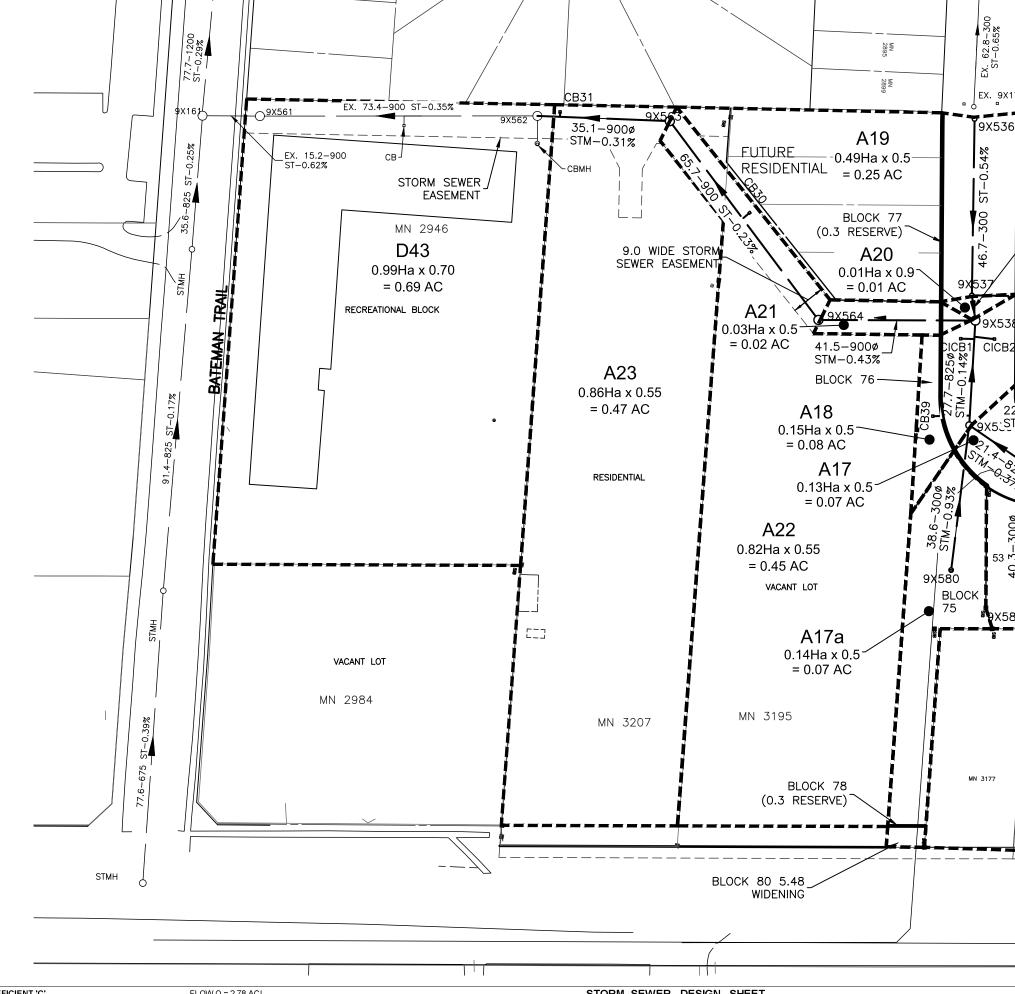
| В      | С     |
|--------|-------|
| 6.331  | 0.809 |
| 6.011  | 0.810 |
| 7.641  | 0.838 |
| 9.025  | 0.860 |
| 9.824  | 0.875 |
| 9.984  | 0.876 |
| 10.500 | 0.884 |
| 10.030 | 0.888 |

# SUBJECT SITE ALLOWABLE FLOW

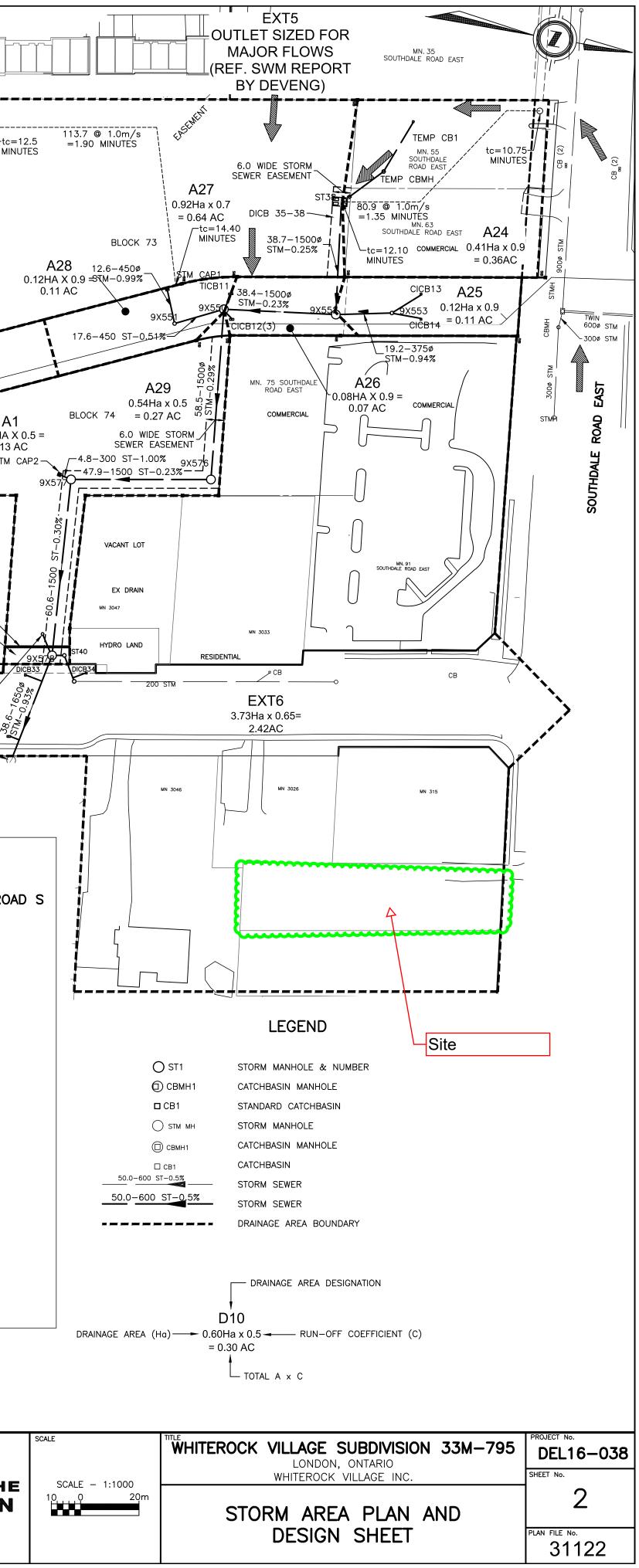
| Total Area:<br>C' Coefficient =<br>Tc=     | 0.200<br>0.65<br>14.070 | Ha<br>min      |
|--------------------------------------------|-------------------------|----------------|
| Subject Site Allowable 5-Year Flows        |                         |                |
| C =                                        | 0.65                    |                |
| Time to concentration $t_c =$              | 14.070                  | min            |
| Intensity, i (@ $t_c$ ) =                  | 89.77                   | mm/hr          |
| 2-Year Flow, Q <sub>r</sub> = 2.78*C*i*A = | 32.44                   | I/s            |
| EXISTING 200mm MANNING'S PIPE FLOWS        |                         |                |
| Manning's n =                              | 0.013                   |                |
| Pipe Dia., D =                             | 0.2                     | m              |
| Area, A =                                  | 0.0314                  | m <sup>2</sup> |
| Wetted Perimeter, P =                      | 0.6283                  | m              |
| Hydraulic Radius, R = A/P =                | 0.0500                  | m              |
| Slope, S =                                 | 2.00%                   |                |
| Pipe Flow Q=(1/n)AR^(2/3)S^(1/2)=          | 0.0464                  | m³/s           |
| =                                          | 46.38                   | l/s            |
| Velocity =                                 | 1.48                    | m/s            |
|                                            |                         | _              |

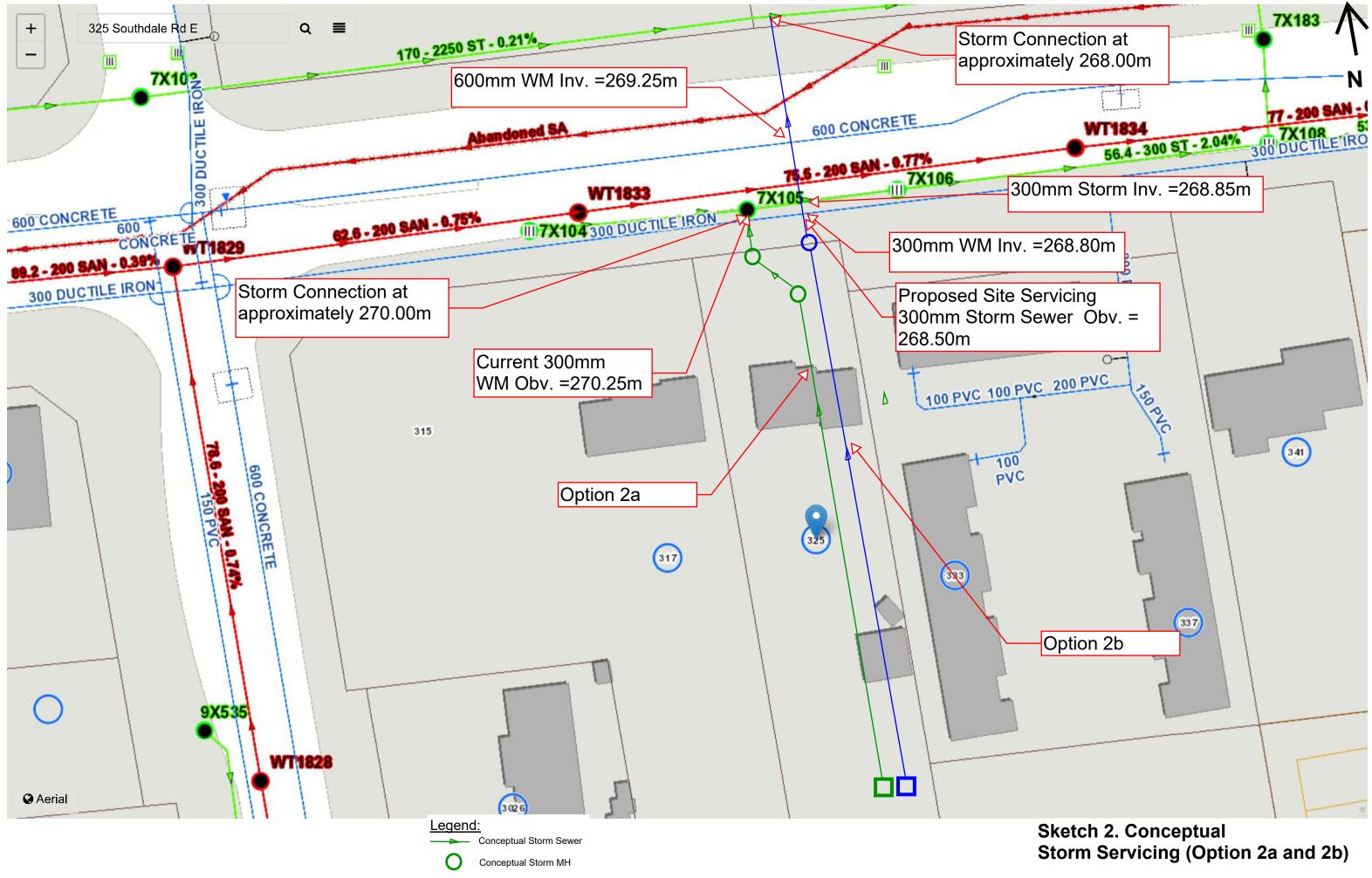
| Subject Site Allowable 100-Year Flows      |        |       |  |
|--------------------------------------------|--------|-------|--|
| C =                                        | 0.65   |       |  |
| Time to concentration $t_c =$              | 14.070 | min   |  |
| Intensity, i (@ $t_c$ ) =                  | 154.55 | mm/hr |  |
| 2-Year Flow, Q <sub>r</sub> = 2.78*C*i*A = | 55.86  | l/s   |  |

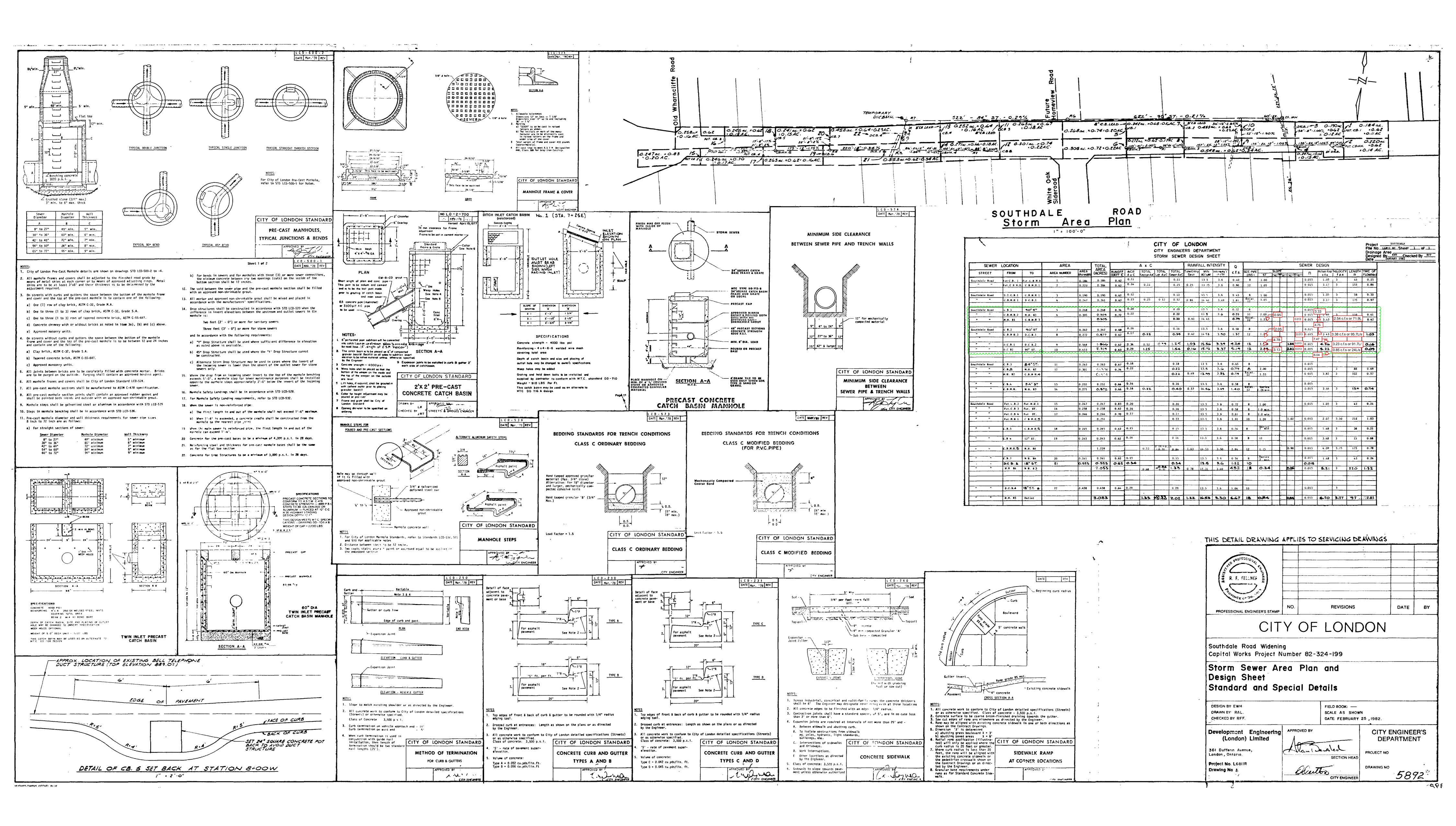
\*\*As per Development Engineering Whiterock Village Subdivision-Storm Atra Plan and Design Sheet (City of Record Drawing 31122)


# POST-DEVELOPMENT CONDITIONS

# TOTAL POST-DEVELOPMENT CONTROLLED AREA (A3)


|                                     | Area (m²) | С   | A*C    |  |
|-------------------------------------|-----------|-----|--------|--|
| Total Area:                         | 2000.00   |     |        |  |
| Building Area:                      | 301.00    | 0.9 | 270.9  |  |
| Concrete/Asphalt:                   | 922.00    | 0.9 | 829.8  |  |
| Gravel:                             | 0.00      | 0.9 | 0      |  |
| Landscaped/Open:                    | 777.00    | 0.2 | 155.4  |  |
| Totals:                             | 2000.00   |     | 1256.1 |  |
| C <sub>eq</sub> = Sum(A*C)/Sum(A) = | 0.63      | ]   |        |  |


| С. 152-900<br>С. 15 | ВЗ         ВЗ           CB31         9X50           SIM-0.31%         A19           FUTURE         0.49Ha x 0.5           CBMH         85           9.0 WIDE STORN         BLOCK 77           SEWER EASEMEN         0.01Ha x 0.9           0.001Ha x 0.9         0.01Ha x 0.9           0.01Ha x 0.5         0.01Ha x 0.9           0.03Ha x 0.5         0.01AC           A23         0.03Ha x 0.5           0.47 AC         A18           0.15Ha x 0.5         0.00 AC           A17         0.13Ha x 0.5           0.07 AC         A22           0.86Ha x 0.55         0.07 AC           A22         0.82Ha x 0.55           0.07 AC         95           MN 3207         MN 3195           BLOCK 78         0.07 AC           MN 3207         MN 3195                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| STMH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | BLOCK 80 5.48<br>WIDENING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | WHITE OAK ROAD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | INTERIM HICKENBOTTOM TO<br>REMAIN ONCE SEDIMENT<br>BASIN IS FILLED IN |
| STREET         FROM         TO         NUMBER         ARE         COEFF         AC         SECTON AC         LAT.         SEV           PETTY BOAD         STI4         STI3         A1         0.250         0.50         0.125         0.000         0           BATEMAN TRAL         STI5         STI3         A2         0.810         0.50         0.650         0.000         0           BATEMAN TRAL         STI7         STI7         EXT         0.360         0.620         0.360         0.623         0.022         0         0           BATEMAN TRAL         STI7         STI7         EXT         0.360         0.680         0.360         0.623         0.020         0           BATEMAN TRAL         STI3         STI2         A5         0.200         2.340         0.560         0.30         0.023         0.020         0.000         0         0           DETTY BOAD         STI3         STI2         A7         D.200         C230         0.50         0.105         0.000         0         0         0.000         0         0         0.000         0         0         0.000         0         0.000         0         0         0.000         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.125         0.348         0.00         19.00         76.00         26.45         300         0.54         0.013         71.06           0.405         1.126         0.00         19.00         76.00         85.58         375         0.50         0.013         123.96           0.203         0.641         0.00         19.00         76.00         48.72         300         1.00         0.013         74.90           0.224         0.816         0.41         19.41         75.00         61.20         300         0.60         0.013         74.90           0.224         0.816         0.41         19.41         75.00         61.20         300         0.60         0.013         74.90           1.127         3.132         1.29         20.29         72.44         226.88         600         0.25         0.013         307.00           1.247         3.465         0.70         20.99         70.86         245.53         600         0.25         0.013         123.96           0.380         1.056         0.38         19.38         75.06         79.26         375         0.50         0.013         460.42           1.807         50.23         0.64 | 1378       33.7       0.41       0.000       0.337       289.190       288.823       288.589         1183       37.6       0.73       0.000       0.030       0.125       288.823       288.589         1195       50.2       0.70       0.000       0.030       0.128       288.628       288.172         1190       484       0.64       0.64       0.000       0.030       0.118       288.628       288.172         1000       2.7       0.38       0.000       0.030       0.043       287.631       288.639         1.420       1.43       0.17       0.000       0.030       0.043       287.951       267.906         1.432       84       0.10       0.000       0.030       0.096       267.762       267.681         1.432       84       0.10       0.000       0.030       0.026       267.642       267.376         1.432       45.0       0.57       0.000       0.030       0.066       267.462       267.376         1.332       47.2       0.64       0.052       0.033       0.066       267.462       267.361         1.332       2.6       0.71       0.000       0.033       0.265 | HARNCLIFFE ROAD                                                       |
| # DENOTES BENCH TO CROWN         * DESIGNATED SEWER RUNS HAVE BEEN DESIGNED         EXISTING SERVICES       DRAWING #, SOURCE       DATE       AS CONSTRUCTED SERVICES       CO         Image: Construct of the construct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DOTO       CONVEY       250       YEAR       STORM       EVEN         DMPLETION       DETAILS       No.       REVISIONS       JAN.         DESIGN BY JSC/JR       2       2ND SUBMISSION       JAN.         DRAWN BY JSC/RAS       3       3RD SUBMISSION       MAR.         CHECKED BY JR/DH       4       4TH SUBMISSION       JUN.         F.BK. S-78, 1259, 1260,       5       5TH SUBMISSION       JUL.         1261       6       6TH SUBMISSION       AUG.         2       7       7TH SUBMISSION       AUG.         3       REVISED ST30 LOCATION       OCT.         9       REVISED BLOCK NUMBERS       JAN.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | DATECONSULTANTCONSULTANTCONSULTANT OR DIVISION20, 2020DEVENG24, 2020DEVENG03, 2020DEVENG29, 2020DEVENG10, 2020DEVENG26, 2020DEVENG29, 2020DEVENG29, 2020DEVENG29, 2020DEVENG29, 2020DEVENG29, 2020DEVENG29, 2020DEVENG29, 2020DEVENG29, 2020DEVENG29, 2020DEVENG25, 2021DEVENG31 Mechanic St., Unit 301                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CANADA                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CANADA                                                                |


|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 77.7-1200<br>ST-0.29%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | EX. 73.4-900 ST-0.35%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CB31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2895<br>2899                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | EX. 9X175                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | EX. 9X198<br>000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <sup>902</sup><br>2906<br>2906<br>2910<br>2911<br>2911<br>EX. 9X                                                                         | ST-0.27% ST-0.27% ST-0.27%                                                                                                                    | 24 MN<br>2620 2816                                                                                                                                                                        | 2821<br>2821<br>2815                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | STMH 35.6-825 ST-0.25%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | EX. 15.2<br>ST-0.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2–900 <sub>CB</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9x562<br>35.1-900ø<br>STM-0.31%<br>СВМН<br>9.0 WIDE STM<br>SEWER EASEM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | A19<br>FUTURE<br>RESIDENTIAL<br>0.49Ha x 0.5<br>= 0.25 AC<br>BLOCK 77<br>(0.3 RESERVE)<br>FORM<br>MENT<br>0.01Ha x 0.5<br>= 0.25 AC<br>0.01Ha x 0.5<br>= 0.25 AC<br>0.01Ha x 0.5<br>= 0.01 AC<br>A21<br>9x564                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 51<br>51<br>50<br>50<br>50<br>6.7-300¢<br>STM-0.44%<br>49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 40 3-30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                     | C 23<br>9X556 9X570<br>9X556 9X570<br>46.0-300ø<br>46.0-300ø<br>STM-0.57%<br>21<br>0.5 m 3                                                    | 11<br>12<br>A2<br>0.81Ha x 0.5<br>13 = 0.41 AC<br>14<br>14                                                                                                                                | 10       9       10       9       10       0       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10 |
| _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 91.4-825_ST-0.17%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | A23<br>0.86Ha x 0.55<br>= 0.47 AC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $ \begin{array}{c} \text{A2 1} & \text{P} \times 564 \\ \text{0.03Ha x 0.5} \\ = 0.02 \text{ AC} & \text{41.5-900} \\ \text{STM-0.43\%} \\ \text{BLOCK 76} \\ \end{array} $ $ \begin{array}{c} \text{A18} \\ \text{0.15Ha x 0.5} \\ = 0.08 \text{ AC} \\ \end{array} $ $ \begin{array}{c} \text{A17} \\ \text{0.13Ha x 0.5} \\ = 0.07 \text{ AC} \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9x538 STM-1.17%<br>48<br>CICB1 CICB2<br>47<br>9x<br>22.3-300ø 46<br>9x5.STM-0.58%<br>9x5.5TM-0.58%<br>9x5.6<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2<br>STM-0.2 | $\begin{array}{c} 43 \\ 44 \\ 44 \\ 656 \\ 0.01 \\ 45 \\ CB3 \\ 9x542 \\ 28 \\ CB4 \\ 42.7 - 825 \\ 9x541 \\ 9x541 \\ 9x542 \\ 45 \\ CB3 \\ 9x541 \\ 9x542 \\ 55 \\ 01 \\ 675 \\ 9x541 \\ 9x54 \\ 9x5$ | 34<br>29<br>0.5<br>C 33<br>2.5-300¢<br>TM-1.59%<br>32<br>9X569<br>32<br>1.6-675¢<br>CB5<br>CB5<br>CB5<br>CB5<br>CB5<br>CB5<br>CB5<br>CB5 | $\begin{array}{c c} & & & & & & & & & & & & & & & & & & &$                                                                                    | 49.7-600 ST-0.26%                                                                                                                                                                         | 6<br>5<br>0<br>9x57<br>4<br>8<br>CICB9 23.1-300¢<br>STM-0.69%<br>9x549<br>44.5-300 ST-0.52%<br>CICB10<br>8<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 77.6-675 ST-0.39%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>VACANT LOT</b><br>MN 2984                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MN 3207                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.82Ha x 0.55<br>= 0.45 AC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C = 0.12 AC $\beta_{10}^{10} = 0$<br>56 57 58 59 $\beta_{10}^{10} = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 07 AC<br>61 62 63 64 0 ≥ 65<br>9 × 575 65<br>EXT3<br>0.43Ha × 0.35<br>= 0.15 AC<br>MN 3129                                               | STM-0.34%       0.24Ha x 0.5         66       67         66       67         68       69         EXT2         0.58Ha x 0.35         = 0.20 AC | 0.20Ha x 0.5<br>= 0.10 AC<br>70<br>71<br>72<br>36.7-300¢<br>STM-0.60%<br>9x55<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$ | A1<br>0.25HA X 0.<br>0.13 AC<br>STM CAF<br>0.25HA X 0.<br>0.13 AC<br>STM CAF<br>0.35Ha X 0.35<br>A3 = 0.12 AC<br>0.12HA X 0.9 =<br>0.11 AC<br>MN 3067<br>BLOCK 79<br>(0.3 RESERVE)<br>BLOCK 81 5.48<br>WIDENING                                                                                                                                                                                                                                                                                                                                                                                          |
| _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | STMH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | BLOCK 80 5.48<br>WIDENING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | WHITE OAK ROAD                                                                                                                           |                                                                                                                                               | <b>I ~ŀ</b>                                                                                                                                                                               | INTERIM HICKENBOTTOM TO<br>REMAIN ONCE SEDIMENT<br>BASIN IS FILLED IN<br>STMH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                          |                                                                                                                                               |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| RUNOFF COEFFICIENT 'C<br>PARKS & PLAYGROUNDS<br>RESIDENTIAL - SINGLE/SE<br>- ROWHOUSING<br>- APARTMENTS<br>COMMERCIAL & INDUSTR<br>SEWER LOCATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6         0.2         WHERE Q =           EMI         0.5 & 55         A = AREA           0.65         C = RUNC         0.65 & .7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | = PEAK FLOW IN LITRES<br>A IN HECTARES (ha)<br>IOFF COEFFICIENT<br>FALL INTENSITY IN MILL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | LIMETERS PER HOUR (mm/hr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | STORM SEWER DES<br>City of London<br>RAINFALL INTENSITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | FILE<br>DRA<br>DES<br>CHE<br>DAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | JECT: WHITEROCK VILLAGE<br>No. DEL16-038<br>INAGE AREA: 29.47 ha<br>IGNED BY: JSC<br>CKED BY: DJH<br>E: January 25, 2021<br>PROFILE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                          | ╾╾╼╶┯╶╾╴╤╴╤╴╤╴┯╶╾╴┯                                                                                                                           | <del>╺╒╒╺╺┍</del> ╼┥╾ <u>╸</u> ┙┥                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| PARKS & PLAYGROUNDS         RESIDENTIAL - SINGLE/SE         - ROWHOUSING         - APARTMENTS         COMMERCIAL & INDUSTR         SEWER LOCATION         STREET         PETTY ROAD         BATEMAN TRAIL         PETTY ROAD         PETTY RD         PETTY RD      < | 0.2         WHERE Q =           EMI         0.5 & 5.55<br>0.65 C         A = AREA<br>0.65 C           0.7 & 9         RETURN PE           AREA           AREA           AREA           FROM         TO         AREA           ST14         ST13         A           ST14         ST13         A           ST13         ST13         A           ST11         ST13         A           ST11         ST13         A           ST13         ST13         ST11         A           ST13         ST12         ST11         A           ST13         ST12         ST11         A           ST11         ST2         A           ST11         ST11         A           ST13         ST12         ST13           ST2 | PEAK FLOW IN LITRES           A IN HECTARES (ha)           IOFF COEFFICENT           FALL INTENSITY IN MILL           RIOD         2           AREA         TOTAL         R           ha.         ha.         ha.         ha.           ha.         ha.         ha.         fall           0.250         0.250         0.250           0.350         0.350         0.350           0.120         0.470         0.070           0.350         0.350         0.380           0.200         2.380         0.0200           0.210         0.210         0.2620           0.240         2.620         0.020           0.210         0.210         0.210           0.210         0.210         0.210           0.180         4.050         0.140           0.180         4.050         0.140           0.180         5.960         0.580           0.240         5.710         0.120           0.120         5.830         0.130           0.130         5.960         0.490           0.140         0.140         1.100           0.121         0.121 | IMETERS PER HOUR (mm/hr)<br>(EARS)           A X C           RUNOFF<br>(above)         INCR<br>AxC         TOTAL<br>SECTION AxC         IAT.<br>LAT.<br>(A X C           0.50         0.125         0.000         1           0.50         0.125         0.000         1           0.50         0.405         0.000         1           0.50         0.123         0.000         1           0.35         0.123         0.000         1           0.35         0.203         0.000         1           0.35         0.203         0.000         1           0.35         0.203         0.000         1           0.50         0.105         0.000         1           0.50         0.105         0.000         1           0.50         0.105         0.000         1           0.50         0.070         1.897         1           0.50         0.200         0.000         1           0.50         0.200         0.000         1           0.50         0.205         2.707         1           0.50         0.070         0.000         1           0.50         0.070         0.000 | STORM SEWER DEscription           City of London           AL         TOTAL         TOTAL SEW.         TIME ENT.         MIN.         INTEL           C         AxC         TOTAL SEW.         TIME ENT.         MIN.         INTEL           C         AxC         SEWER         2.78 xAxC         SECT.         ACCUM.         INTEL           0.125         0.348         0.00         19.00         76.0           0.405         1.126         0.00         19.00         76.0           0.123         0.341         0.01         19.00         76.0           0.203         0.564         0.01         19.00         76.0           0.203         0.564         0.01         19.00         76.0           0.105         0.292         19.00         76.0           0.105         0.292         19.00         76.0           0.105         0.292         19.00         76.0           0.105         0.292         19.00         76.0           0.106         0.418         9.03         2.13         68.2           1.967         5.468         0.33         2.213         68.2           1.967         5.468         0.3 | SIGN SHEET         SEVER DESIGN           INS.         Q         PIPE Dia         FINAL         N         AC           Inhr         Vs         mm         SLOPE         AC         AC           Inhr         Vs         mm         SLOPE         AC         AC           Inhr         Vs         mm         SLOPE         AC         AC           IOO         26.45         300         0.54         0.013         T           IOO         48.72         300         1.00         0.013         T           IOO         48.72         300         1.00         0.013         T           IOO         48.72         300         1.00         0.013         T           IOO         48.72         300         0.60         0.013         T           IOO         22.19         375         0.50         0.013         T           IOO         22.19         375         0.50         0.013         T           IOO         79.26         375         0.30         0.013         A           I12         364.54         675         0.30         0.013         A           I24         373.14 | FILE<br>DRA<br>DES<br>CHE         DAT           N         TIME OF<br>VELOCITY         TIME OF<br>FLOW         MAI           CAP.         VELOCITY         LENGTH         FLOW         LO           71.06         1.000         43.8         0.73         C           23.96         1.225         94.5         1.29         C           96.70         1.378         33.7         0.41         C           74.90         1.183         37.6         0.53         C           96.70         1.207         46.4         0.64         C           23.96         1.207         46.4         0.64         C           23.96         1.200         22.7         0.38         C           23.96         1.200         22.7         0.38         C           60.42         1.420         14.3         0.17         C           60.42         1.428         28.6         0.33         C           60.42         1.420         14.3         0.16         C           60.42         1.423         28.8         0.10         C           60.42         1.428         28.6         0.33         C           60.42         1.432<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | No.         DEL16-038           INAGE AREA: 29.47 hs           IGNED BY:         JSC           CKED BY:         DJH           E         January 25, 2021           FOFILE           HOLE         DROP         SEWER         INVERT         ELI           MOLE         DROP         SEWER         INVERT         U.S.         D.           m         m         m         m         n         n           000         0.300         0.237         268.835         268           109         0.225         0.473         268.891         268           000         0.030         0.337         269.190         268           000         0.030         0.126         268.298         268           000         0.030         0.116         268.142         268           000         0.030         0.043         267.951         267           000         0.030         0.043         267.951         267           000         0.030         0.043         267.951         267           000         0.030         0.043         267.951         267           000         0.030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                          | PETY ROAD<br>WHITE COAK ROAD                                                                                                                  | ERNAL CATCHMENT AREA (EXT5)<br>PER SWM REPORT<br>APPROX. 14.1HA<br>1:3000 SCALE                                                                                                           | WHARNCLIFFE ROAD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |









