

The Odan/Detech Group Inc.
P: (905) 632-3811
F: (905) 632-3363
5230, SOUTH SERVICE ROAD, UNIT 107
BURLINGTON, ONTARIO, L7L 5K2
www.odandetech.com

RESIDENTIAL SUBDIVISION 1944 BRADLEY AVENUE CITY OF LONDON

FUNCTIONAL SERVICING REPORT

Prepared For:

ELITE DEVELOPMENTS

May 18, 2023

TABLE OF CONTENTS

DES	SCRIPTION	page
1.0	BACKGROUND	1
2.0	DESIGN CONSIDERATIONS	2
	A) Sanitary Waste Water Disposal	2
	B) Water Distribution	4
	C) Stormwater Servicing	6
	Existing Conditions	7
	Proposed Conditions	7
	Grading Considerations	7
	Erosion Control	8
3.0	CONCLUSIONS	9

APPENDIX A

Proposed Residential Subdivision by Weston Consulting

APPENDIX B

External Sanitary Area Plan prepared by Development Engineering Sanitary Calculation Spreadsheet for Parker Jackson Subdivision by Development Engineering Watermain modelling excerpts for Parker Jackson Subdivision by Development Engineering Conceptual Servicing Plan Conceptual Grading Plan

Figure 1 – Pre Development Storm Tributary Areas

Figure 2 – Post Development Storm Tributary Area Plan

Strom Sewer Design Sheet

1.0 BACKGROUND

The property under study is a 42.3 ha (104.5 acre) site located in the City of London, north-east of the intersection of Bradley Road and Jackson Road. The site is bound by a Parker Jackson residential subdivision to the north and west which is currently under construction, agricultural lands to the east, and Bradley Rd to the south.

Presently the site is farm land consisting of a dwelling with a barn on the southern portion and a wooded area on the northern portion. An existing hydro transmission corridor traverses the middle of the site running in south-west to north-east direction. See below Exhibit 1 for an aerial view of the existing site.

Exhibit 1 - Site Aerial Image

The proposed development by Elite Developments will consist of a mix of single detached homes, freehold townhouses and condo townhouses. Access to the site will be from a future road connection to the west from the neighbouring Parker Jackson Subdivision in Phase 4, currently denoted as Street N or Evans Blvd. The area of proposed development within the property is situated between the northerly woodlot and the existing hydro transmission corridor which has an area of 9.5 ha (23.5 acres). For further information regarding the proposed site layout please refer to drawings prepared by Weston Consulting in Appendix A. See Appendix A for aerial view and the proposed site plan.

This report will evaluate the serviceability of the site with respect to sanitary, water and stormwater services and also conceptual grading of the proposed development.

For detailed topography of the existing site conditions, as of September 2022, refer to the topographic survey prepared by A.T. McLaren Ltd.

2.0 DESIGN CONSIDERATIONS

A) SANITARY WASTE WATER DISPOSAL

Existing Site

Presently there are no existing sanitary sewers adjacent to the site. A 250mm diameter sanitary sewer located within the future Street N/Evans Blvd to the west is proposed to be stubbed to the property and has allocated capacity to service the proposed development, including lands east of the subject site. Development Engineering has prepared an external sanitary tributary area plan which shows there is a population of 2,160 that has been assigned in the downstream sewer design. Please refer to Appendix B for the external sanitary tributary area plan prepared by Development Engineering.

The sewer design spreadsheet prepared by Development Engineers shows that the downstream 250mm sanitary sewer sloped at 0.33% has a capacity of 34.18 l/s and the anticipated flow from the allocated population is 20.47 l/s. The upstream area that has been allocated is 14.84ha therefore an additional 1.48 l/s of infiltration has been allocated to the connecting sewer. Since the proposed development is only 9.5 ha, the remaining 5.34 ha has been assigned to lands east of the site. Please refer to Appendix B for the downstream sewer design calculations prepared by Development Engineering.

Based on the above allocation and construction of the downstream sanitary sewer on the neighbouring lands, the proposed development will have an outlet for sanitary services.

Proposed Developed Site

The proposed site will consist of residential units only. The unit type breakdown is shown in the following Table 1.

Table 1 – Summary of Residential Units for Sanitary Flow Calculations							
Proposed Residential Typology	No. of Units						
Single Detached	49						
Freehold Townhomes	144						
Condo Townhomes	88						
Total	281						

Refer to the site statistics and the site plan by Weston Consulting in Appendix A for further details.

For calculating the population for the site the following City standards for population densities and flow rates will be used. It should be noted these densities were also used by Development Engineers in calculating the downstream receiving sewers to the west.

- 3 persons/unit for Single Detached and Freehold Townhomes
- 2.4 persons/unit for Condo Townhomes
- The per capita flow rate of 230 L/person/day for residential

Based on the above information, the peak sanitary flow from the proposed development was calculated as shown below totaling 9.08 L/s.

Total Tributary Area Per Capita Flow (Q) Infiltration Rate (i)	230	ha L/cap/day L/s/ha		SITE DES	SCRIPTION:	Residential Subdivision 1944 Bradley Rd City of London			
LAND USE	NUMBER OF UNITS	SITE AREA, (ha)	GROSS FLOOR AREA, m2	TOTAL POPULATION	TOTAL DAILY FLOW (LITERS)	AVERAGE DAILY FLOW I/sec	PEAKING FACTOR, M	TOTAL FLOW FROM LAND USE, I/sec	
RESIDENTIAL, Freehold Townhomes/Single Detached, using 3 persons/unit	193			579	133,170	1.54			
RESIDENTIAL, Condo Townhomes, using 2.4 People/Unit	88			211	48,576	0.56			
TOTAL RESIDENTIAL	281			790	181,746	2.10	3.86	8.13	
TOTAL				V1=	181,746	Q1 = Q (infil) = Q (total) =		L/s L/s L/s	
Notes:									
Q = (MqP/86400) + A * I (L/sec)									
where :									
Peaking Factor (M) = 1 + [14 / (4 q = L/cap/day P = Population A = Gross site area		V1= Total Volume from Land Use in liters Q1= Total domestic flow from Land Use (L/sec) Q (infil) = Total flow from infiltration (L/sec) Q (total) = Total flow (Land use + Infiltration)							

As shown above, the total generated expected sanitary flow and population from the site is less than the allocated values assigned to the allocated sanitary sewer downstream within the future Phase 4 of Parker Jackson Subdivision. No changes to existing downstream design is required.

All sanitary sewers within the development will be sized at 250mm diameter which is the minimum City of London standard. Please refer to Appendix B for the conceptual sanitary servicing layout within the subdivision showing pipe slopes and invert depths.

i = Infiltration rate

B) WATER DISTRIBUTION

The water servicing for the site will be provided by connecting to the future 300mm watermain which will be stubbed to the site at the connecting Street N/Evans Blvd.

Looping the municipal watermain through the site back to future Street L/Lyndsay Street through the proposed connector green spaces along the north and west boundary is proposed to maintain pressure and flows to the site and will also provide a secondary water source in case of temporary shut downs of watermains within the site. The connection to Street L/Lindsay Street will need to be made through the proposed Park Block within Phase 4 of Parker Jackson Subdivision denoted as Block 60. Please refer to the proposed servicing concept in Appendix B for the conceptual watermain layout for the proposed site.

A WaterCAD model was completed by Development Engineers for the proposed neighbouring Parker Jackson Subdivision (Parker Jackson Subdivision Water Servicing Design Report dated August 1, 2021) which included conceptual modelling for the subject site with consideration for looping to the 600mm watermain on Commissioners Rd to the north or the 600mm watermain on Bradeley Ave to the south, however due the distance to complete these connections the loop to Street L has been proposed as mentioned above. Further analysis of the looping requirements will be completed to confirm available flows within the proposed development.

Domestic Water Demands

The domestic water demand for the site will be calculated using City of London design standards as follows.

a)	Average Day domestic demand - Peak day demand -	using 255 L/cap/day (790 persons)	2.33 L/sec
b)	Peak day demand -	3.5 x daily demand	8.16 L/sec
c)	Peak hour demand -	7.8 x daily demand	18.17 L/sec

Fire Protection

The required fire flow for the proposed development is typically determined by the Ontario Building Code at the building permit stage. As per City guidelines the Fire Underwriters Survey (FUS) can be used to determine preliminary fire demands however without specific dwelling unit sizes and setback requirements know at this time, demands from the City of London's Design Specification and Requirements manual are to be considered.

In modeling the site Development Engineering used a fire demand of 76 L/s for single detached dwellings and 105 L/s for townhouse units.

Fire hydrants will be distributed throughout the proposed subdivision meeting the City's hydrant spacing requirements.

Design Considerations

The unit rate and peaking factors of water consumption, minimum pipe size and allowable pressure in line will be established from the City's Water Design Standards.

The pressures and volumes must be sufficient for peak hour conditions and under fire conditions as established by the Ontario Building Code. The minimal residual pressure under fire conditions is 140 kpa (or 20.3 psi).

According to the MOE criteria the allowable pressures are as follows:

Condition	Allowable Pres	Allowable Pressures (kpa)					
	min.	max.					
1) Min. Hour	275	700					
2) Peak Hour	275	700					
3) Peak Day + Fire Flow	140	700					

To determine the pressures that will be available to the site, the full buildout conditions were considered for the watermain connection and hydrant at the Street N/ Evans Ave connection point in Development Engineers Report. The available flow under peak day plus fire flow was determined to be 77 L/s with a pressure of 313.56 kpa (45.5 PSI) at the connection point which meets the fire flow requirement for single detached dwellings but not for townhome units. Looping options to increase flow will be further evaluated on subsequent submission upon further coordination with the neighbouring development. Please refer to excerpts of Development Engineers modelling results in Appendix B for details of the ultimate buildout conditions on the neighbouring subdivision.

C) STORMWATER SERVICING

The existing site is located within the Dingman Creek catchment area and drains toward the Thames River through the Hampton-Scott Municipal Drain. The area of development within the subject lands has been allocated to the Parker Stormwater Management Facility located to the westward, on the east side of Jackson Street between Darnley Blvd and Evans Blvd within the Parker Jackson Subdivision. The pond was constructed by the City of London in 2019 to provide quantity and quality control for 78.1 ha of land which includes the proposed subdivision denoted as area 202e in Exhibit 2 below.

Exhibit 2 - Site Aerial Image

Existing Conditions

A pre-development drainage area plan located in Appendix B has been prepared to show the detailed existing storm catchments within the proposed subdivision to confirm existing outlets surrounding the site and their contributing areas. Areas 1, 2 and 3 currently drain westward toward the neighbouring Parker Jackson Subdivision with Area 2 draining directly into the existing neighbouring woodlot. Area 4 currently drains southward toward Bradley Rd however this area has been allocated to the existing SWM pond and will be diverted in the post-development condition. No external areas are presently draining towards the proposed subdivision therefore no existing interim catchments will need to be considered in the proposed storm sewer design.

Proposed Conditions

The proposed subdivision will be serviced for storm drainage by a proposed 1350mm storm sewer stub located on future Street N/Evans Blvd. The connecting sewer has been sized to accommodate the subject development and future residential lands denoted as 202f (11.637 ha) on Exhibit 2 above.

A preliminary storm sewer design is shown on the conceptual servicing plan in Appendix B which shows the storm sewers sizing and slope requirements to service the site and the future westerly developable lands. A 1050mm storm sewer will be terminated at the west limit of the site to service future development. Storm design calculations and an associated storm tributary plan is provided in Appendix B detailing all proposed pipe lengths within the development located on municipal road allowances.

The open space areas of the development between the woodlot and the proposed residential lots will remain as per existing conditions and will drain according to the existing topography. Areas draining toward the residential units will drain to proposed rear yard catchbasins whereas areas draining toward the northerly and westerly woodlot will continue to drain to their respective outlets.

The internal private condo townhouse block will be serviced with one storm outlet west of the block. Internal sewers within the block have not been detailed at this stage as the sewers will be privately owned and the block will be subject to a Site Plan Application which will detail the sewer design within the block. This block will not require any quantity or quality stormwater control as this is being managed within the downstream Parker SWM facility.

Grading Consideration

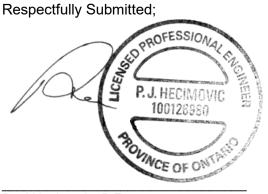
Grading for the proposed site will be such that major overland flow will be directed westward through the proposed internal road network toward the connecting Street N/Evans Blvd. Overland flow beyond the property is proposed to be directed overland to the Parker SWM facility via the proposed road network.

A conceptual grading design can be found in Appendix B showing how the site will tie into existing surrounding sites and direct overland runoff to westerly lands.

Erosion Control

Erosion and sediment controls for the site will be implemented according to The Ministry of Natural Resources Guidelines on Erosion and Sediment Control for Urban Construction Sites. A detailed erosion control plan will be prepared upon final design.

3.0 **CONCLUSIONS**

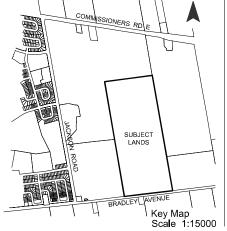

From our investigation the site is serviceable utilizing the future allocated sanitary, storm and watermain infrastructure that will be constructed in Phase 4 of the westerly Parker Jackson Subdivision.

A 250mm sanitary stub at the connecting Street N/Evans Blvd has an allocated population of 2,160 people of which 790 are within the proposed development, thereby providing sufficient capacity for the site.

A 300mm watermain stub has been proposed at the connecting Street N/Evans Blvd which provides sufficient flow to meet the water demand for single family dwellings however will require looping to a second watermain source to accommodate water demand for the proposed townhouse units within the development. Watermain looping options will be explored through further watermain analysis.

A 1350mm storm sewer stub at the connecting Street N/Evans Blvd will provide sufficient stormwater drainage capacity to drain stormwater from the subject development and future developable lands to the east. The existing downstream Parker SWM facility located west of the site within Parker Jackson Subdivison has allocated quantity and quality control to service the site for stormwater management purposes.

Respectfully Submitted;



Paul Hecimovic, P.Eng

Proposed Residential Subdivision by Weston Consulting

DEVELOPMENT STATISTICS	:		
Land Use	Lots/Blocks	Units	Area
Single Detached Residential	Lots 1-49	49 units	2.246 ha
Street Townhouses	Blks 50-72	144 units	2.748 ha
Condo Townhouse Block	Blk 73		1.862 ha
Greenspace Connector	Blk 74		0.232 ha
Future Development	B l k 75,76		17.635 ha
Hydro Easement	B l k 77,78		2.518 ha
30 m Buffer	B i k 79		1.909 ha
Environmental Protection Area	B i k 80		9.449 ha
0.3m Reserves	Blk 81,82		0.001 ha
Roads			3.517 ha
TOTAL		193 units	42.117 ha

ADDITIONAL INFORMATION:

[Section 51(17) of the Planning Act, R.S.O. 1990, c. P.13], as amended to February 09, 2023.
a), b), e), f), g), & j) - on plan.
c) - on key plan
d) - see statistics

a) - see statistics
 h) - piped municipal water supply
 i) - silty clay and gravel
 k) - piped communal sewage disposal
 l) - easements as in instruments

ELITE BRADLEY DEVELOPMENTS INC.
SAM SAKHI
102-3410 SOUTH SERVICE ROAD
BURLINGTON, ONTARIO L7N 3T2
PHONE (289) 816-1024 EMAIL: s.sakhi@eli

SURVEYOR'S CERTIFICATE:

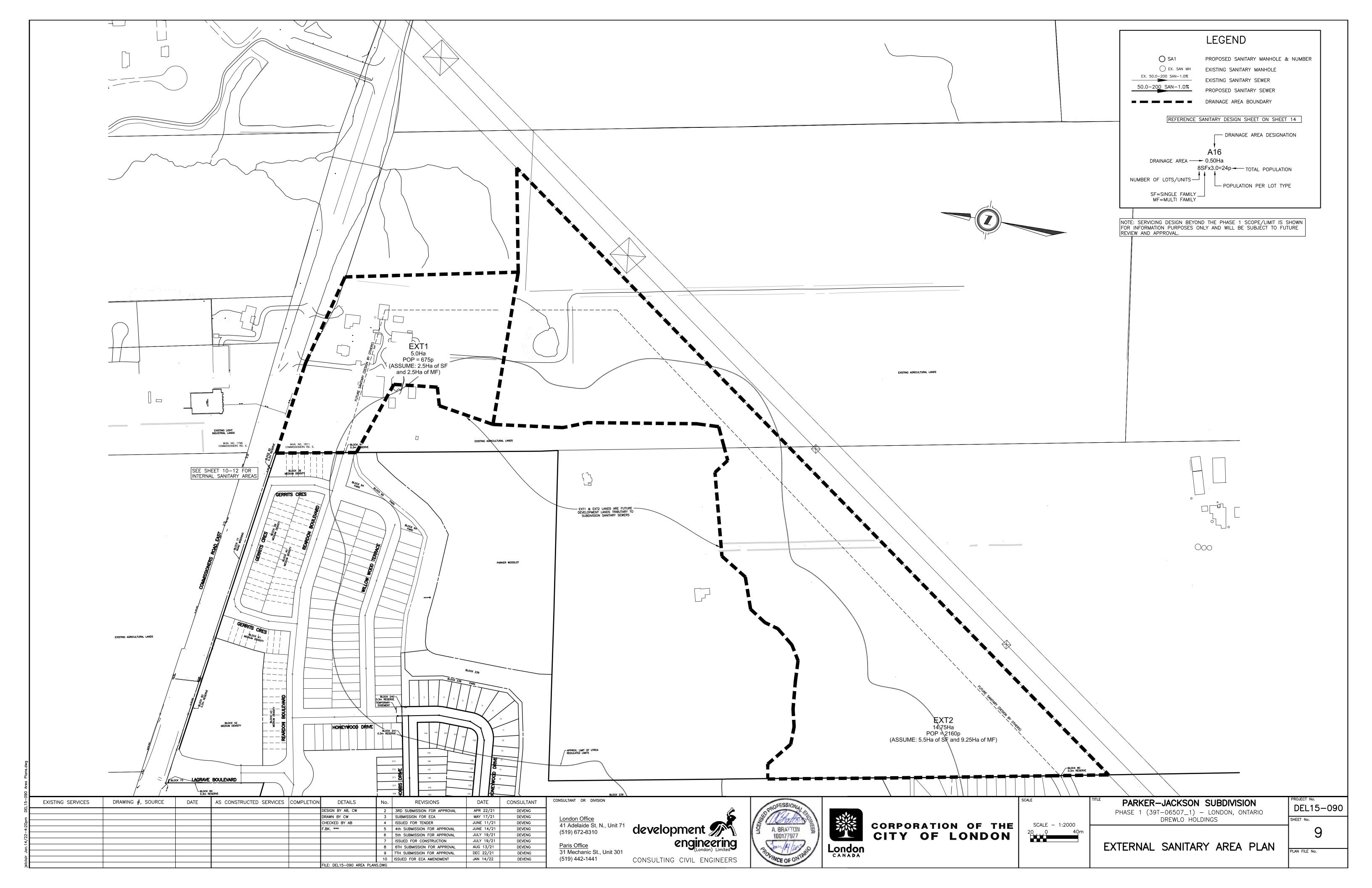
I hereby certify that the boundaries of the lands being subdivided and their correct relationship to the adjacent lands are accurately and correctly shown on this plan.

A.T. McLAREN LIMITED
LEGAL AND ENGINEERING SURVEYS
69 JOHN STREET SOUTH, SUITE 230
HAMILTON, ONTARIO, LBN 289
PHONE (905) 527–8559 FAX (905) 527–0032

SCALE

25 50 75 100m **WESTON**

File Numbe

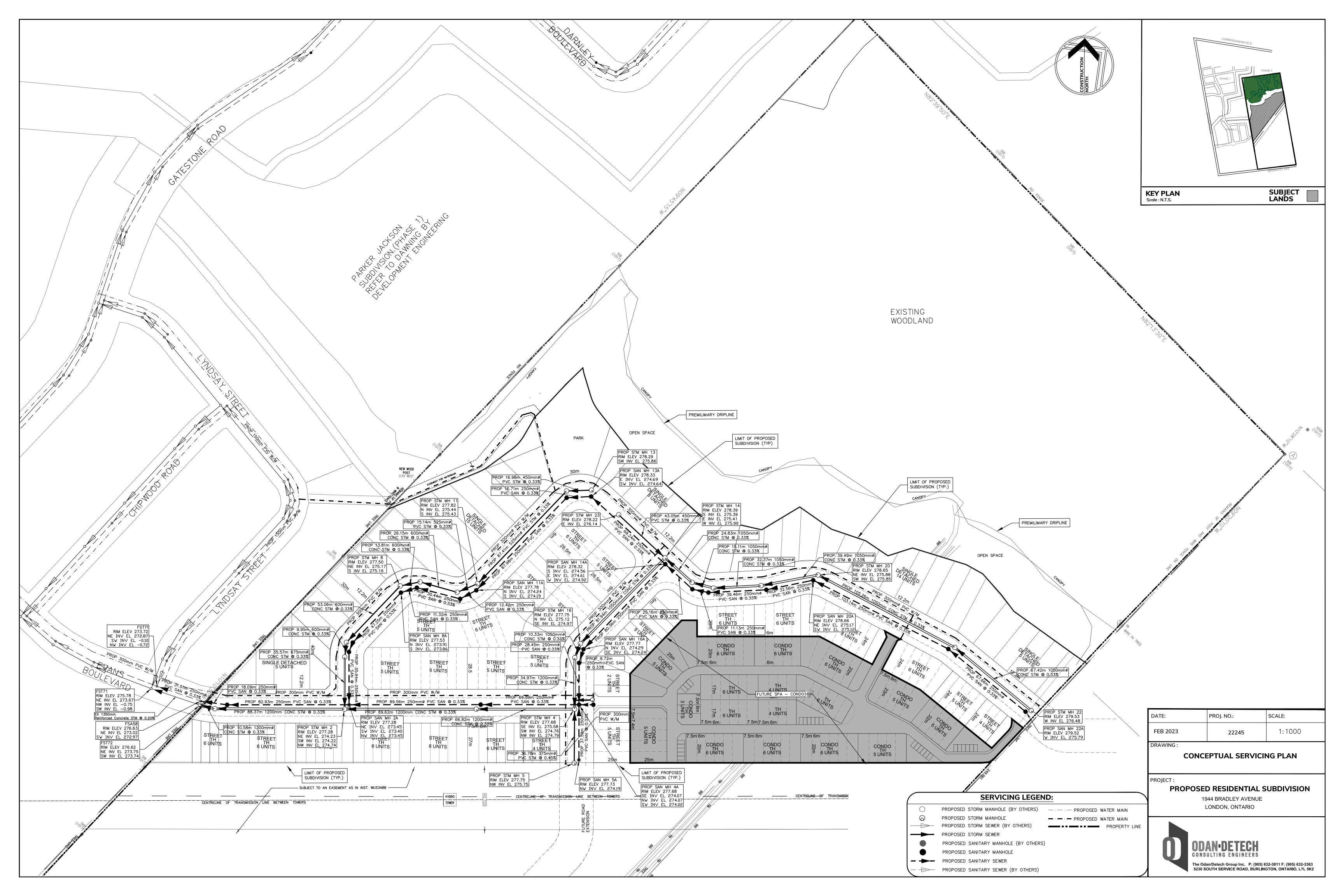


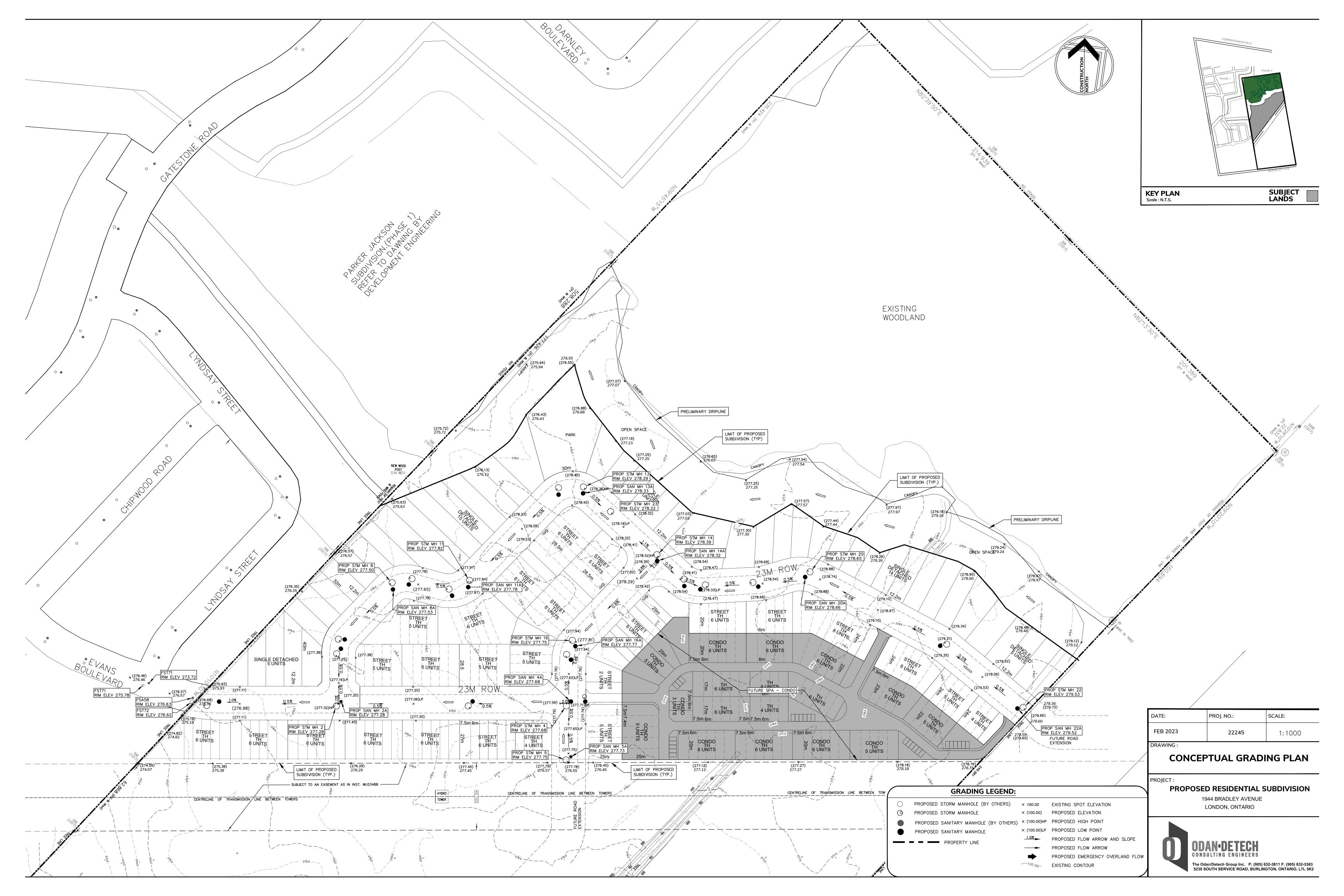
REVISIONS LIST 21 FEB 2023 First Draft

D1 see scale bar 10574/draft plans/D1.dgn

APPENDIX B

External Sanitary Area Plan prepared by Development Engineering
Sanitary Calculation Spreadsheet for Parker Jackson Subdivision by Development Engineering
Watermain modelling excerpts for Parker Jackson Subdivision by Development Engineering
Conceptual Servicing Plan
Conceptual Grading Plan
Figure 1 – Pre Development Storm Tributary Areas
Figure 2 – Post Development Storm Tributary Area Plan
Strom Sewer Design Sheet




DEL15-090-WaterDistModel.wtg

Max Day + FF - Ultimate

Fire Flow Report - Time: 0.00 hours

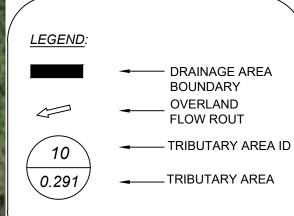
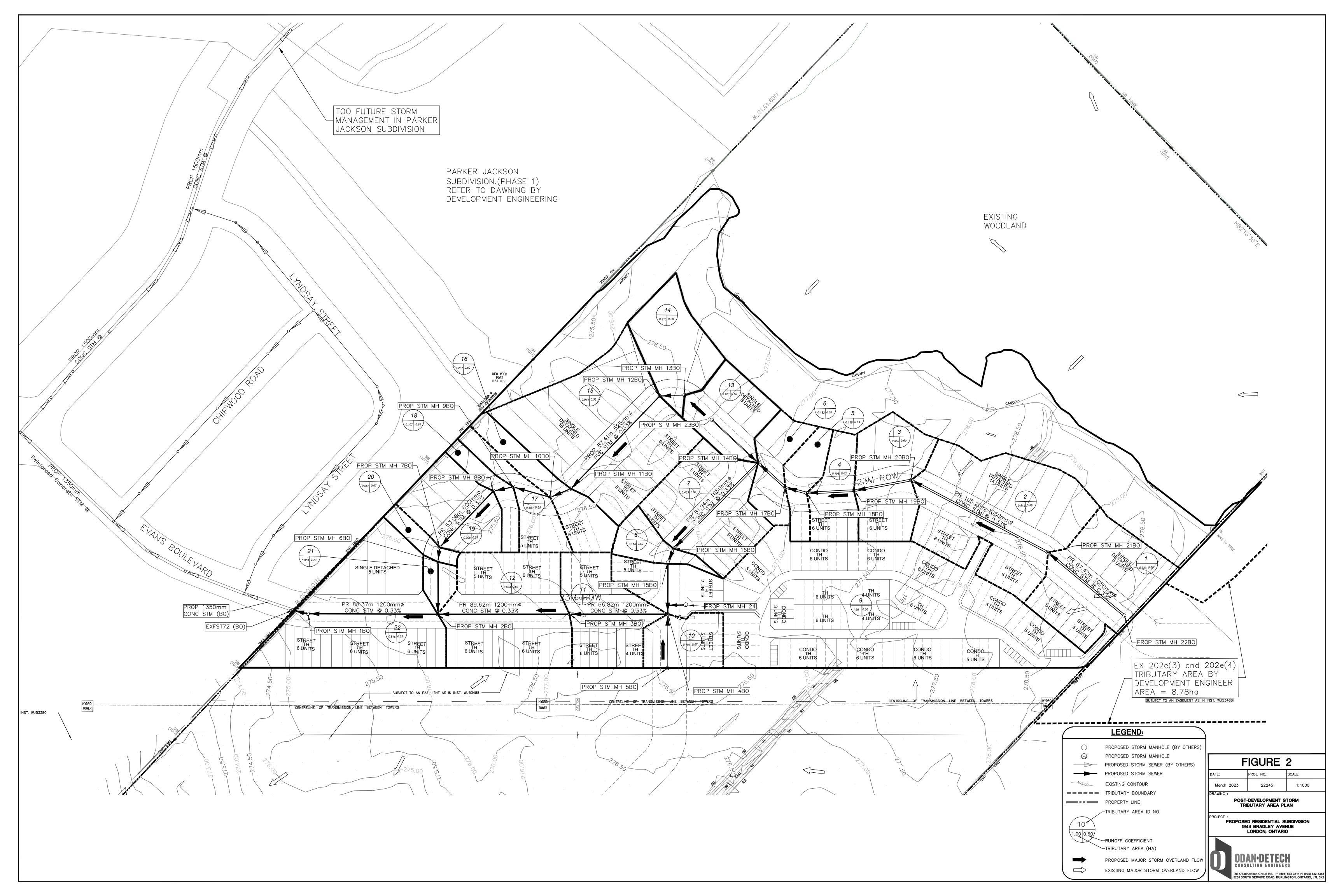

Label	Satisfies Fire Flow	Flow (Total Needed)	Flow (Total Available)	Pressure (Calculated	Pressure (Calculated	Junction w/	Pipe w/ Maximu	Velocity of
	Constraint	(L/s)	(L/s)	Residual)	Zone Lower	Minimum	m	Maximum
	s?		77	(kPa)	Limit)	Pressure	Velocity	Pipe
	Caspet 15.		A. A		(kPa)	(Zone)		(m/s)
H-1	True	76.000	77.000	331.32	321.56	J-47	P34	1.34
H-2	True	76.000	77.000	342.28	321.56	J-47	P34	1.34
H-3	True	76.000	77.000	338.79	318.23	J-47	P34	1.34
H-4	True	76.000	77.000	330.79	313.56	J-47	P34	1.34
H-5	True	76.000	77.000	224.61	242.24	J-47	P18	2.31
H-7	True	76.000	77.000	351.90	327.10	J-47	P34	1.34
H-8	True	76.000	77.000	372.00	336.48	J-24	P34	1.34
H-9	True	76.000	77.000	393.77	336.48	J-24	P33	1.34
H-10	True	105.000	106.000	397.15	337,20	J-24	P91	1.37
H-11	True	76.000	77.000	358.18	333.71	J-24	P35	1.83
H-13	True	76.000	77.000	376.65	335.24	J-24	P100	0.89
H-14	True	105.000	106.000	295.02	300.58	J-37	P13	2.40
H-15	True	76.000	77.000	346.88	334.87	J-24	P11	1.58
H-16	True	76.000	77.000	349.45	330.81	J-24	P45	1.73
H-17	True	76.000	77.000	312.54	325.19	H-19	P48	1.38
H-18	True	76.000	77.000	317.01	321.21	H-19	P50	1.45
H-19	True	76.000	77.000	304.29	307.04	J-24	P51	1.28
H-20	True	76.000	77.000	315.97	316.03	J-22	P102	1.67
H-21	True	76.000	77.000	329.14	321.79	J-21	P53	1.62
H-22	True	76.000	77.000	343.12	329.89	J-21	P55	1.35
H-23	True	76.000	77.000	341.35	334.79	J-24	P12	1.84
H-25	True	76.000	77.000	348.96	332.26	J-21	P61	1.37
H-26	True	76.000	77.000	346.60	329.13	J-21	P64	1.40
H-27	True	76.000	77.000	305.42	311.10	J-12	P66	1.54
H-28	True	76.000	77.000	305.53	302.83	J-12	P68	1.40
H-29	True	105.000	106.000	308.36	299.29	J-12	P100	1.26
H-30	True	105.000	106.000	286.48	287.23	J-11	P100	1.26
H-31	True	105.000	106.000	317.06	303.78	J-12	P100	1.26
H-32	True	105.000	106.000	331.77	312.10	J-12	P100	1.27
H-33	True	105.000	106.000	348.78	321.21	J-12	P100	1.28
H-35	True	76.000	77.000	371.17	334.72	J-22	P100	1.04
H-36	True	105.000	106.000	368.72	329.50	J-21	P100	1.27
H-38	True	105,000	106.000	372.42	338.15	J-22	P100	1.51
H-39	True	76.000	77.000	354.05	338.14	J-22	P87	1,32
H-47	True	105.000	106.000	369.08	331.14	J-21	P100	1.32
H-49	True	76.000	77.000	375.67	334.64	J-21	P100	0.95
H-50	True	76.000	77.000	352.56	340.28	J-22	P104	1.52
H-51	True	105.000	106.000	392.52	331.12	J-24	P91	1.15
H-52	True	76.000	77.000	328.21	326.80	J-31	P36(1)	1.48
H-53	True	76.000	77.000	327,24	322.64	J-11	P3(1)	1.03
H-54	True	76.000	77.000	319.53	322.43	J-22	P4(1)	3.13
H-55	True	76.000	77.000	350.68	329.10	J-47	P17(2)	2.13
H-56	True	76.000	77.000	313.95	313.35	J-45	P17(1)	1.58
H-57	True	76.000	77.000	271.35	273.74	J-44	P15(1)	2 . 35

FIGURE 1


DATE:	PROJ. NO.:	SCALE:
FEBURARY 2023	22245	3000

PRE DEVELOPMENT STORM TRIBUTARY AREAS

PROPOSED RESIDENTIAL SUBDIVISION

1944 BRADLEY AVENUE LONDON, ONTARIO

STORM SEWER DESIGN SHEET

Project No.: 22245

Location: 1944 BRADLEY AVENUE

Project: Proposed Residential Subdivision

DESIGNED BY: M.A.A. DATE: Feb. 24-2023 RAINFALL Return Period 2-years

CHECKED BY

1290/ (Tc+8.5)0.86

PIPE ROUGHNESS: n = 0.013 For Manning's Equation

Vmin = 1.0 m/s

Vmax = 4.5 m/s, for <= 825 mm $V_{max} = 6.0 \text{ m/s for} >= 900 \text{ mm}$

ODAN-DETECH

Municipality: City of London			E										n = 0.013 For Manning's Equation $vmax = 4.5 m/s, fPeak Flow / Full Flow Capacity vmax = 6.0 \text{ m/s}, \text{ f}$				
Municipanty		idon						% 01 Full F	iow:	Peak Flow /	ruii riow C	араспу			m/s, for >=	900 mm	
Tributary ID No.	From Manhole	To Manhole	A Area ha	C Runoff Coeff.	A*C	Accumulated A*C	Time of Concentration (min)	Flow Time (min)	Rainfall Intensity (mm/hr)	Peak Flow (l/s)	Pipe Length (m)	Pipe Size (mm)	Pipe Slope (%)	Pipe Full Flow Capacity (I/s)	Pipe Full Flow Velocity (m/s)	Percent of Full Flow Capacity (%	
External			8.78	0.60	5.268	5.268	20.30		71.70	1050		1050	0.33	1569	1.81	67	
1	Pr. MH 22		0.533	0.60	0.320	5.588	20.30	0.62	71.70	1114	67.42	1050	0.33	1569	1.81	71	
2	the New York Assessed to	Pr. MH 20	0.843	0.59	0.497	6.085	20.92	0.97	70.40	1191	105.26	1050	0.33	1569	1.81	76	
3	THE ROLL SERVICE STREET	Pr. MH 19	0.353	0.60	0.212	6.297	21.89	0.36	68.46	1198	39.49	1050	0.33	1569	1.81	76	
4		Pr. MH 18	0.196	0.62	0.122	6.418	22.25	0.30	67.77	1209	32.4	1050	0.33	1569	1.81	77	
5	Pr. MH 18		0.138	0.59	0.081	6.500	22.55	0.14	67.21	1214	15.1	1050	0.33	1569	1.81	77	
6	Pr. MH 17	Pr. MH 14	0.182	0.60	0.109	6.609	22.69	0.23	66.95	1230	24.8	1050	0.33	1569	1.81	78	
		20 W VIII WOOD					22.92										
13	Pr. MH 23	Pr. MH 14	0.261	0.60	0.216	0.216	10.00	0.70	104.91	63	43	450	0.33	164	1.03	38	
							10.70										
7	D- 141144	D- 141146	0.483	0.60	0.290	7.116	22.92	0.75	66.53	1316	01.04	1050	0.22	1500	1.01	0.4	
8	Pr. MH 14	Pr. MH 16	0.483	0.60	0.290	7.115 7.186	23.67	0.75	65.19	1316	81.94 10.33	1050 1050	0.33	1569 1569	1.81	84 83	
9	Pr. MH 15		1.96	0.66	1.294	8.409	23.07	0.10	65.02	1520	45.3	1200	0.33	2240	1.81	68	
9	Pr. IVIT 15	Pr. IVIT 4	1.90	0.00	1.294	8.409	24.15	0.38	03.02	1320	43.3	1200	0.55	2240	1.98	08	
10	Pr. MH 5	Pr. MH 4	0.191	0.67	0.128	0.128	10.00	0.58	104.91	37	36.8	375	0.45	118	1.06	32	
10	PI. IVIN 3	PI.IVIT 4	0.191	0.07	0.128	0.128	10.58	0.38	104.91	31	30.8	3/3	0.43	118	1.00	32	
							10.58	1									
11	Pr. MH 4	Pr. MH3	0.372	0.67	0.249	8.786	24.15	0.56	64.37	1572	66.82	1200	0.33	2240	1.98	70	
12	Pr. MH3	Pr. MH2	0.624	0.67	0.418	9.204	24.71	0.75	63.43	1623	89.62	1200	0.33	2240	1.98	72	
			0.02	0.07	0.110	7.201	25.46	0.75	05.15	1023	07.02	1200	0.55	2210	1.50	1-1-	
14	Pr. MH 13	Pr. MH 12	0.316	0.28	0.088	0.088	10.00	0.28	104.91	26	17	450	0.33	164	1.03	16	
15	Pr. MH 12	CONTROL OF THE PARTY OF THE PAR	0.914	0.58	0.530	0.619	10.28	1.28	103.59	178	87.4	525	0.33	247	1.14	72	
16	Pr. MH 11		0.237	0.60	0.142	0.761	11.55	0.22	97.89	207	15.14	525	0.33	247	1.14	84	
17	Pr. MH 10		0.189	0.63	0.119	0.880	11.77	0.35	96.97	237	26.15	600	0.33	353	1.25	67	
18	Pr. MH 9	Pr. MH8	0.107	0.61	0.065	0.945	12.12	0.18	95.56	251	13.8	600	0.33	353	1.25	71	
19	Pr. MH8	Pr. MH7	0.308	0.59	0.182	1.127	12.31	0.71	94.83	297	53	600	0.33	353	1.25	84	
20	Pr. MH7	Pr. MH6	0.067	0.67	0.045	1.172	13.01	0.13	92.14	300	10	600	0.33	353	1.25	85	
21	Pr. MH6	Pr. MH2	0.063	0.70	0.044	1.216	13.15	0.44	91.65	310	35.6	675	0.33	483	1.35	64	
							13.59										
22	Pr. MH2	FST 72	0.815	0.62	0.505	10.925	25.46	0.83	62.22	1890	99	1200	0.33	2240	1.98	84	