

Hydrogeological Assessment

FINAL REPORT *Copia Developments*

Project Name: Proposed Apartment Complex 1470 – 1474 Highbury Avenue North London, Ontario

Project Number: KCH-00260285-A0

Prepared By:

EXP Services Inc. 405 Maple Grove Road Unit 6 Cambridge, Ontario, N3E 1B6 t: +1.519.650.4918 f: +1.519.650.4603

Date Submitted:

November 2, 2021

EXP Services Inc.

i

Hydrogeological Assessment

Copia Developments

Type of Document: Final Report

Project Name: Proposed Apartment Complex 1470 - 1474 Highbury Avenue North London, Ontario

Project Number: KCH-00260285-A0

Prepared and Reviewed By:

EXP Services Inc. 405 Maple Grove Road, Unit 6 Cambridge, ON, N3E 1B6 Canada t: +1.519.650.4918 f: +1.519.650.4603

Kelli Dobbin, B.Sc., G.I.T Gescientist in Training, Earth and Environment

Heather Jaggard, M.Sc., P.Geo. Hydrogeologist, Earth and Environment

Date Submitted: November 2, 2021

Hagit Blumenthal. M.Sc., P.Geo Hydrogeologist, Earth and Environment

Executive Summary

EXP Services Inc. (EXP) was retained by **Copia Developments** to conduct a hydrogeological assessment relating to the proposed development of an apartment complex to be located at 1470 - 1474 Highbury Avenue North in London, Ontario, hereinafter referred to as the 'Site'.

The objective of the hydrogeological assessment was to examine the hydrogeological characteristics of the Site by reviewing the Ministry of the Environment, Conservation and Parks (MECP) Water Well Records (WWR), reviewing the soils and groundwater information provided from a series of sampled boreholes and monitoring wells at the Site, compiling a site wide water balance, collecting a full year of groundwater elevations to identify any seasonal variations, and assess the landscaped pond located on the property. It is understood that the hydrogeological assessment will be submitted for review and approval by the City of London and the Upper Thames River Conservation Authority (UTRCA).

Dewatering works associated with the proposed construction are anticipated to involve the taking of more than 400,000 litres of groundwater per day, and as such, in accordance with Ontario Ministry of the Environment, Conservation and Parks (MECP) classifications, the project is considered a Category 3 water taking. A Category 3 Permit to Take Water (PTTW) Hydrogeological Report and application will be submitted under separate cover to support construction dewatering activities.

Based on the results of the hydrogeological assessment, the following findings are presented:

- A landscaped pond is present in the eastern portion of the Site. This landscaped pond connects to an unnamed drain which flows south and west of the site and eventually discharges into the Thames River. An area encompassing the pond and the east edge of the Site are considered regulated lands of the UTRCA;
- The majority of the Site is covered with sand underlain by sand and gravel. A clayey silt till unit underlies the sand and gravel and is present along the steep slope on the east side of the Site. Underlying the till is another sand and gravel unit. The upper sand and gravel unit is likely hydraulically connected to the landscape pond;
- Both shallow and intermediate aquifers have had a consistent upward gradient during the monitoring period, indicating discharge conditions on Site;
- Groundwater and surface water elevations have been collected on site for a total of 1 year. The highest groundwater elevation collected on Site was collected in monitoring well BH3/MW-A (deep) with an elevation of 244.96 m amsl on April 14, 2021. The lowest groundwater elevation collected on Site was measured in monitoring well BH1/MW in February 2021 at an elevation of 243.12 m amsl);
- Construction of the Site will include multiple levels of underground parking to approximate depths of 32 feet. At this time it is assumed that construction will involve the installation of cut-off walls down into the underlying till material, through the shallow and intermediate aquifers on Site. A Category 3 Permit to Take Water (PTTW) will be required for construction dewatering;
- Through review of UTRCA online mapping software, the Site is not within a significant groundwater recharge area (SGRA), but the entire Site is mapped as being a highly vulnerable aquifer (HVA);
- A total of six (6) domestic, one (1) commercial, and one (1) irrigation groundwater supply wells are located within a 500 m radius of the Site. These wells were installed into overburden sand aquifers

ii

encountered at depths ranging from 3 m to 12.2 m. Door-to-door well survey indicated there are eleven (11) private water supply wells in the vicinity of the Site;

- Results of the door-to-door survey identified two (2) residences along Webster Street who have requested water level monitoring of their private wells during construction activities;
- Two (2) grain size analyses were carried out on samples of the upper and lower sand and gravel units. The hydraulic conductivity of both samples was 4.7 x 10⁻⁵ m/s calculated using the Kozeny-Carman method. Based on single well response tests the hydraulic conductivity ranges from 3.0 x 10⁻⁸ m/s to 4.2 x 10⁻⁵ m/s of the sand and gravel units on site using the Hvorslev method;
- Surface drainage generally flows to the north in the western portion of the Site and the eastern portion of the Site drains towards the landscaped pond and the unnamed drain;
- The monitoring wells on Site have been maintained for ongoing study past the completion of this report. When the wells are no longer required, they should be decommissioned in accordance with O. Reg. 903; and,
- The water balance calculations indicate that post-construction infiltration volumes can be maintained to 80% pre-development volumes with the construction and effective use of Low Impact Development (LID) practices.

A full year of groundwater elevation monitoring (July 2020 to July 2021) and water quality monitoring was completed in support of the hydrogeological investigation. Based on the hydrogeological data collected from the property, a good understanding has been captured regarding the groundwater conditions related to site development. It is our hope that this Final Report will be sufficient for Site Plan Submission.

iii

iv

Table of Contents

1.	INTRODUCTION AND BACKGROUND			
	1.1	Background	1	
	1.2	Proposed Development, Dewatering Controls and Stormwater Management Plans	2	
	1.3	Terms of Reference and Scope of Work	2	
2.	METH	ODOLOGY	4	
	2.1	Borehole Drilling and Monitoring Well Installations	4	
	2.2	Piezometer and Staff Gauge Installation	5	
	2.3	Well Development and Groundwater Sampling	6	
	2.4	Surface Water Sampling	6	
	2.5	Long-Term Groundwater Elevation Monitoring	6	
	2.6	Hydraulic Conductivity Testing	7	
	2.6	.1 Single Well Response Tests (SWRTs)	7	
	2.6	.2 Grain Size Analyses	7	
3.	SITE D	ESCRIPTION AND GEOLOGIC SETTING	8	
	3.1	Site Location and Description	8	
	3.2	Topography and Drainage	8	
	3.3	Wetlands and Ecology	8	
	3.4	Site Geology	8	
	3.4	.1 Bedrock Geology	8	
	3.4	.2 Overburden Geology	9	
	3.4	.3 Site Specific Surficial Geology	9	
4.	HYDRO	DGEOLOGIC SETTING	11	
	4.1	Regional Aquifer	11	
	4.1	.1 Overburden Aquifers	11	
	4.1	2 Bedrock Aquifer	12	
	4.2	MECP Water Well Records	12	
	4.3	Door to Door Well Survey	12	
	4.4	Site Specific Groundwater Elevations and Flow	14	
	4.4	.1 Landscaped Pond	15	
	4.4	.2 Hydraulic Gradients	15	
	4.5	Hydroperiod and Recharge	15	
	4.6	Hydraulic Conductivity	17	
	4.7	Groundwater and Surface Water Quality	18	

EXP Services Inc. Final Report Project Name: Proposed Apartment Complex - 1470 – 1474 Highbury Avenue North, London, ON Project Number: KCH-00260285-A0 Date: November 2, 2021

v

5.	MONT	HLY WATER BALANCE ASSESSMENT	19
	5.1	Precipitation and Evapotranspiration	19
	5.2	Infiltration, Runoff and Recharge	20
	5.3	Pre-development and Post-development Calculations	20
	5.4	Low Impact Development (LID) Practices	21
6.	CONST	RUCTION DEWATERING CALCULATIONS	23
7.	SOURC	EWATER PROTECTION CONSIDERATIONS	24
	7.1	Significant Groundwater Recharge Areas (SGRA)	24
	7.2	Highly Vulnerable Aquifers (HVA)	24
8.	IMPAC	T ASSESSMENT	26
	8.1	Water Well Users	26
	8.2	Surface Water Features	26
	8.2	1 Landscaped Pond	26
	8.2	2 General Comments	27
9.	QUALI	FICATIONS OF ASSESSORS	28
10.	REFER	ENCES	29
11.	GENER	AL LIMITATIONS	31

Appendices

- Appendix A Drawings
- Appendix B Development Plan
- Appendix C Borehole Logs
- Appendix D Grain Size Analyses
- Appendix E MECP Water Well Record Summary
- Appendix F Well Survey Questionnaire Responses
- Appendix G Water Levels and Hydrographs
- Appendix H Single Well Response Test Data
- Appendix I Water Quality Tables
- Appendix J Laboratory Chain of Custody
- Appendix K Water Balance Assessment
- Appendix L Limitations and Use of Report
- Legal Notification

Tables (in text)

- Table 1 Monitoring Well Construction Details
- Table 2 Piezometer Construction Details
- Table 3 Well Survey Questionnaire Response Summary
- Table 4 Hydroperiod as defined by Manual Measurements
- Table 5 Hydraulic Conductivity Results
- Table 6 Summary of Water Balance Estimates

Drawings (Appendix A)

- Drawing 1 Site Location Plan
- Drawing 2 Borehole Location Plan and Natural Heritage Features
- Drawing 3 Site Area Drainage
- Drawing 4 Regulated Lands of the UTRCA
- Drawing 5 Bedrock Topography
- Drawing 6 Physiographic Regions
- Drawing 7 Physiographic Landforms
- Drawing 8 Quaternary Geology
- Drawing 9 Surficial Geology
- Drawing 10 Cross Section Location Plan
- Drawing 11 Generalized Cross Section A-A'
- Drawing 12 Approximate Location of MECP Registered Wells
- Drawing 13 Groundwater Flow Direction (Shallow)
- Drawing 14 Groundwater Flow Direction (Deep)
- Drawing 15 Piper Diagram for Water Quality
- Drawing 16a Schoeller Diagram for Water Quality (Major Ions)
- Drawing 16b Schoeller Diagram for Water Quality (Minor Ions
- Drawing 17 Significant Groundwater Recharge Areas
- Drawing 18 Highly Vulnerable Aquifers

vi

1. Introduction and Background

1.1 Background

EXP Services Inc. (EXP) was retained by **Copia Developments** to conduct a hydrogeological study and water balance assessment relating to the proposed development of an apartment complex to be located at 1470 - 1474 Highbury Avenue North in London, Ontario, hereinafter referred to as the 'Site' (**Appendix A, Drawing 1**).

The objective of the hydrogeological study is to examine the hydrogeological characteristics of the Site by reviewing the Ministry of the Environment, Conservation and Parks (MECP) Water Well Records (WWR), reviewing the soil and groundwater information provided from a series of sampled boreholes and monitoring wells at the Site, compiling a Site wide water balance, collecting a full year of groundwater elevations to identify any seasonal variations; and assess the surface water feature on the property. The assessment provides comments pertaining to potential impacts on hydrogeological conditions at the Site and provides recommendations and design/construction measures, where applicable, to mitigate this potential for impact. This final report includes a full year of data collection thus fulfilling the requirements in support of the Site Plan Submission.

Dewatering works associated with the proposed construction are anticipated to involve the taking of more than 400,000 litres of groundwater per day, and as such, in accordance with Ontario Ministry of the Environment, Conservation and Parks (MECP) classifications, the project is considered a Category 3 water taking. A Category 3 Permit to Take Water (PTTW) Hydrogeological Report and application will be submitted under separate cover to support construction dewatering activities.

It is understood that the hydrogeological study and water balance assessment will be submitted for review and approval by the City of London and the Upper Thames River Conservation Authority (UTRCA) as part of the Draft Plan Approval for the proposed development. The study design and report have been compiled in accordance with the City of London Design Specification & Requirements Manual (2019) as well as the Conservation Authority Guidelines for Hydrogeological Assessments (2013).

A landscaped pond is located in the northeast portion of the Site and extends into the adjacent property to the north. Based on this hydrogeological investigation this pond is likely connected to groundwater found in the shallow, unconfined aquifer. This pond has been assessed based on its impact to, and dependence on, groundwater resources on the Site and the analysis is provided based on a full year of monitoring.

The UTRCA administers a regulation made under Section 28 of the Conservation Authorities Act, known as Development, Interference with Wetlands and Alterations to Shorelines and Watercourses (O.Reg. 157/06). The regulation was approved by the Minister of Natural Resources and Forestry on May 4, 2006. This regulation allows the UTRCA to ensure that proposed development and other activities have regard for natural hazard features. The UTRCA implements the regulation by issuing Section 28 permits for works in or near watercourses, valleys, wetlands, or shorelines, when required.

Property owners must obtain permission and/or a letter of clearance from the local Conservation Authority before beginning any development, site alteration, construction, or placement of fill within the regulated area. Permits are also required for any wetland interference, or for altering, straightening, diverting or interfering in any way with the existing channel of a creek, stream or river. It is EXP's understanding that the Site is subject to this regulation, and requires a Section 28 permit, as the Site contains a water feature.

1.2 Proposed Development, Dewatering Controls and Stormwater Management Plans

The development plan for the Site includes three (3) high-rise apartment buildings (Buildings A, B and C) with three (3) levels of underground parking. The Site will have all municipal servicing as well as on site access roads, sidewalks, and some surface parking spaces. The proposed development plan is included in **Appendix B**.

It is currently understood that construction activities will include the installation of cut-off walls around each building foundation to assist with dewatering control during construction. For the purposes of this report and associated dewatering calculations, it is assumed that the cut-off walls will be installed into the underlying till material, approximately 15 meters (m) below existing ground surface. This installation depth is required in order to provide control for the shallow and intermediate aquifers found on Site. The dewatering of the aquifers within the areas of construction will require a Category 3 Permit to Take Water (PTTW) as the estimated dewatering volumes are expected to be above 400,000 L/day.

The proposed stormwater management (SWM) plans for the Site includes connection to the storm sewer outlet on Highbury Avenue North. It is anticipated that Low Impact Development (LID) facilities will be constructed on Site to assist with water balance volumes. Clean water from rooftop runoff is recommended to be utilized in LID facilities as infiltration.

1.3 Terms of Reference and Scope of Work

The hydrogeological assessment was completed in accordance with the scope of work outlined in EXP's Proposal 999-25001726-PP dated May 29, 2020. Authorization to proceed with this investigation was received from Mr. Alex Hois of **Copia Developments**, in a signed proposal dated June 2, 2020. The work plan was provided to the UTRCA and the City of London in an email dated June 3, 2020. Comments were received through emails dated June 4, 2020 and June 16, 2020 and no changes to the proposed field program were required.

The purpose of the assessment was to examine the subsoil and groundwater conditions at the Site by advancing a series of boreholes and installing monitoring wells at the locations chosen by EXP and illustrated on the appended Borehole Location Plan (**Appendix A, Drawing 2**).

The scope of work for the Hydrogeological Assessment consisted of the following tasks:

1. <u>Desktop Study</u>: This task consisted of a review of existing information including Site plans, previous reports, geological maps, geological cross sections, groundwater level information, borehole logs, and MECP WWR.

EXP has completed several Geotechnical Investigations and Hydrogeological Assessments in the vicinity of the Site and relevant details from those studies have been incorporated, where appropriate.

2. <u>Field Program</u>: Installation of six (6) monitoring wells in four (4) locations was carried out as part of the field program with two (2) of the locations being completed with sets of nested wells (BH2/MW – A/B and BH3/MW – A/B). In addition, two (2) piezometers and a staff gauge were installed within the landscape pond. Water levels have been measured monthly since installation. Groundwater and surface water quality samples were collected and single well response tests (SWRT) were completed for the purposes of characterizing the hydrogeological conditions at the Site. Water levels were collected from the monitoring wells for a period of 1 year to identify seasonal fluctuations in the groundwater elevations and the hydroperiod of the water feature. This monitoring period was completed between July 2020 and July 2021.

- 3. <u>Data Evaluation</u>: Evaluation of the available field and laboratory data, assessment of the dewatering requirements and potential dewatering effects on the surrounding environment, as applicable.
- 4. <u>Water Balance</u>: Preparation of a monthly water balance assessment of the subject Site evaluating pre- and post-development conditions.
- 5. <u>Construction Dewatering Estimates</u>: Based on the proposed construction plans provided to EXP, construction dewatering calculations have been compiled for the groundwater volumes required for extraction within the cut-off walls.
- <u>Reporting</u>: This task consisted of preparing this hydrogeological assessment report. In preparing this report, EXP has considered the guidance material available in the Conservation Ontario Guidelines for Hydrogeological Assessments (Conservation Ontario, 2013) and City of London Design Specification & Requirements Manual (2019).

Reference is made to **Appendix L** of this report, which contains further information necessary for the proper interpretation and use of this report.

2. Methodology

Prior to conducting the field work, it was anticipated that shallow near surface groundwater would be present at the Site based on EXP experience in the area and review of the Ministry of the Environment, Conservation and Parks (MECP) Water Well Records for the area. Based on that experience, it was anticipated that a shallow groundwater aquifer would likely be present near surface on the Site. Given that much of the servicing and potential underground parking depths at the Site are expected to be at conventional depths, it was determined that it would be reasonable to install wells within the upper and lower sand and gravel units in order to assist in developing a conceptual model for the groundwater flow system at the Site.

The monitoring wells were also installed for the purpose of providing insight on potential impacts of development on local private well users, the landscaped pond located on Site, as well as construction dewatering requirements needed for an application for a Category 3 Permit To Take Water (PTTW), completed under separate cover.

2.1 Borehole Drilling and Monitoring Well Installations

On June 17, 2020, five (5) boreholes were advanced at three (3) locations in the west portion of the Site with installation of monitoring wells in all five (5) boreholes. Two locations were completed as 'nested' wells to allow for hydrogeological evaluation (BH2/MW – A/B and BH3/MW – A/B). Between March 12 and March 17, 2021, four (4) additional boreholes were advanced (BH101 to BH104) with one additional well installation (BH104/MW). These locations are all presented on **Drawing 2**. Borehole drilling and monitoring well installation was completed under the technical supervision of EXP. The location and depth of the boreholes was based on the proposed development plan which was provided to EXP. Well installations were confined to the west portion of the Site as the land in the centre and east of the Site was inaccessible due to heavy vegetation and surface water bodies. Boreholes were advanced to depths ranging from 3.0 to 15.7 m below grade.

The boreholes were completed using a track-mounted drill rig and standard 21 cm (8") OD hollow stem auger drilling techniques with split spoon sampling. During the drilling, the stratigraphy in the boreholes was examined and logged in the field by EXP technical personnel. Representative samples of the soils found in the boreholes were submitted for laboratory testing that included moisture content and gradation. Copies of the field borehole logs are provided in **Appendix C**. Copies of the soil gradation analyses are included in **Appendix D**.

All wells were constructed from 5.1 cm (2") diameter, schedule 40, polyvinyl chloride (PVC), flush-threaded casing. The appropriate number of risers were coupled with screen sections via threaded joints to construct the well. The well screens consisted of PVC pipe with 0.010-inch factory-generated slots. A summary of the well installation details is provided in **Table 1**, with the well locations shown on **Drawing 2**.

A primary filter pack consisting of Silica Sand was placed around the well screen in the borehole and extended above the top of the well screen. Hole Plug, a swelling Bentonite clay that forms an effective barrier to the vertical movement of fluids when installed in a borehole, was used as a seal above the filter pack.

Well ID	Ground Surface Elevation (m amsl)	Top of Standpipe Elevation (m amsl)	Completion Depth (m bgs)	Screen Length (m)	Screened Strata
BH1/MW	245.98	246.82	6.6	1.52	Sand and Gravel; Clayey Silt Till
BH2/MW-A	245.99	246.70	8.5	1.52	Sand and Gravel; Clayey Silt Till
BH2/MW-B	245.94	246.85	3.0	1.52	Clayey Silt Till; Sand and Gravel; Sand
BH3/MW-A	246.05	246.82	8.5	1.52	Sand and Gravel; Clayey Silt Till
BH3/MW-B	246.05	246.93	3.7	1.52	Sand and Gravel; Sand
BH104/MW	246.0	246.79	9.0	1.52	Sand

Table 1 – Monitoring Well Construction Details

Notes: 1. m amsl denotes metres above mean sea level. 2. m bgs denotes metres below ground surface.

2.2 Piezometer and Staff Gauge Installation

A total of two (2) shallow groundwater piezometers (P-1 and P-2) and one (1) staff gauge were installed on July 27, 2020 in the vicinity of the landscaped pond on the Site where surface water was present (Station 1 and Station 2). The locations are shown on **Drawing 2**. The following **Table 2** outlines the piezometer construction details.

The piezometers were installed with a 6-inch Solinst drive point end (6-inch screen length). The Solinst drive point piezometer ends have a stainless steel, 50 mesh cylindrical filter screen, within a ¾" (20mm) stainless steel drive-point body.

A staff gauge was installed adjacent to Station 1 within the surface water body in order to capture monthly surface water elevations. This staff gauge is referred to as SG1.

Station ID	Piezometer ID	Ground Surface Elevation (m amsl)	Top of Piezometer Elevation (m amsl)	Completion Depth (m bgs)	Screen Length (m)	Screened Strata	Staff Gauge Installed
Station 1	P-1	243.40*	244.50*	1.00	0.15	Sand and Gravel; Some Cobbles	Yes (SG1)
Station 2	P-2	244.19	245.38	0.60	0.15	Sand and Gravel; Occasional Cobbles	No

Table 2 – Piezometer Construction Details

Notes: 1. m amsl denotes metres above mean sea level.

2. m bgs denotes metres below ground surface.

* Indicates approximate elevations to be confirmed for the final hydrogeological report.

2.3 Well Development and Groundwater Sampling

Monitoring wells were developed following installation. The wells were developed to:

- remove fine soil particles adjacent to the well screen that may otherwise interfere with water quality analyses;
- restore the groundwater properties that may have been disturbed during the drilling process;
- improve the hydraulic communication between the well and the geologic materials; and,
- remove water, if any, added during the drilling process.

Wells were generally developed by removing a minimum of ten times the volume of water contained in the well casing (casing volume) where possible using rigid high-density polyethylene (HDPE) tubing fitted with Waterra[™] inertial pumps.

Groundwater samples were collected from monitoring wells BH3/MW-A and BH3/MW-B on October 17, 2020 and March 17, 2021 for analysis of groundwater quality. Groundwater chemistry results are presented and discussed in **Section 4.7**.

2.4 Surface Water Sampling

Surface water samples were collected from SW1 on October 17, 2020 and March 17, 2021 in order to establish baseline surface water quality. Surface water chemistry results are presented and discussed in **Section 4.7**.

2.5 Long-Term Groundwater Elevation Monitoring

Water level monitoring in all monitoring wells, piezometers and staff gauge installed on Site was completed on a monthly basis during the monitoring period from July 2020 to July 2021. Measurements were manually collected using a battery-signal water level tape.

Water level dataloggers were installed in monitoring wells BH3/MW-A and BH3/MW-B, as well as in piezometers P-1 and P-2 to assist in the evaluation of groundwater elevations and influence of precipitation on groundwater levels. An additional logger was placed at surface and used for barometric compensation. The water level dataloggers were installed on July 28, 2020 and remained in place for continued monitoring until the monitoring period was completed, on July 12, 2021. Water level measurements are logged every 24 hours.

2.6 Hydraulic Conductivity Testing

Hydraulic conductivity estimates for the soils were determined using two methods. The first method is applicable to saturated soils at depth and involves single well recovery tests (SWRT) within the installed monitoring wells.

The second method involves a calculated estimation of hydraulic conductivity based on soil sample particle size analysis using the Kozeny-Carman method. The two methods used for this study area described in the following subsections.

2.6.1 Single Well Response Tests (SWRTs)

Single well response tests (SWRTs) were completed in monitoring wells BH3/MW-A, BH3/MW-B (October 17, 2020) and MW104 (April 23, 2021) to estimate hydraulic conductivity of the subsurface soils. The test method consisted of an initial purging of the well and subsequent monitoring of the rise in the water level in the well over time.

The mathematical solution by Hvorslev (1951) was used to interpret the data and involved matching a straight-line solution to water-level displacement data collected during the recovery test. The time required for the water level in the well to reach 37% of the initial change (T_o) is determined from the plot, and used in the following equation to estimate the hydraulic conductivity (K);

$K (m/s) = [r^2 ln(L/R)] / [2 L T_o]$

where: r is the radius of the well casing; R is the radius of the well screen; and, L is the length of the well screen.

2.6.2 Grain Size Analyses

A total of two (2) soil samples were selected for grain size distribution analysis testing. Due to the nature of the Site soils, estimated hydraulic conductivity (K) values were determined using the Kozeny-Carman methodology. The Kozeny-Carman method of correlating the grain size distribution analysis to the soil hydraulic conductivity is based on the following relationship:

K (cm/s) = 6.16 x
$$\left(\frac{\left[0.255\left(1+0.83\frac{d60}{d10}\right)\right]^3}{\left[1-0.255\left(1+0.83\frac{d60}{d10}\right)\right]^2}\right)$$
 x (d₁₀)²

3. Site Description and Geologic Setting

3.1 Site Location and Description

The Site is located on the east side of Highbury Avenue North, south of Kilally Road and west of Webster Street. The municipal address is 1470 - 1474 Highbury Avenue North in London Ontario. The Site is generally rectangular and approximately 1.45 ha in size (**Drawing 1**). The Site is generally bounded by agricultural lands to the south with residential developments beyond, and residential developments to the north, east and west.

A landscaped pond is located on the east side of the Site (**Drawing 2**) and extends into the adjacent property to the north. The eastern half of the Site is heavily forested and difficult to access.

The development plan for the Site includes two (2) high-rise apartment buildings with associated roadways and three (3) levels of underground parking, all to be serviced with municipal water and sewer services set at conventional depths. The development will be contained to the west half of the Site. The proposed development plan is included in **Appendix B**.

3.2 Topography and Drainage

The existing topography at the Site is very flat on the west side of the Site. There is a steep slope on the east side of the landscape pond with an elevation difference of approximately 13 m from the east edge of the Site to the water feature. The Site ground elevations range between 259 m above mean sea level (m amsl) in the east and 246 m amsl in the west.

An unnamed drain is present and runs south of the landscape pond area on the Site (**Drawing 3**). This drain continues south to Townsend Drive and then flows west toward the North Thames River. The area surrounding this drain is regulated by the UTRCA, as shown on **Drawing 4**. Surface runoff from the west side of the Site drains slightly to the north and surface runoff from the east side of the Site flows towards the landscape pond and unnamed drain. The proposed development is entirely contained within the area draining north (**Section 5.3**).

The Site is located in the subwatershed of The Forks. Most of the east half of the Site surrounding the water feature and unnamed drain is regulated by the Upper Thames River Conservation Authority (UTRCA), as shown on **Drawing 4**.

3.3 Wetlands and Ecology

There are no mapped wetlands within the Site area. It is understood that an ecological study of the Site is being conducted under separate cover. Details regarding the ecology of the Site, including the landscaped pond, can be referenced in the separate ecological study report.

3.4 Site Geology

3.4.1 Bedrock Geology

The Site is underlain by limestone, dolostone and shale of the Dundee Formation (OGS, 2011). This formation consists of 60 to 160 feet (18 to 49 m) of light brown, medium-grained with some minor chert (Hewitt, 1972), and is part of

the Algonquin Arch, which forms a ridge along the southwestern Ontario peninsula between the Michigan Basin (to the northwest) and the Appalachian Basin (to the southwest). Bedrock is generally not exposed in the area.

Review of bedrock topography mapping (**Drawing 5**; OGS, 1978) indicates the bedrock surface at an elevation in the range of 226 to 230 m in the vicinity of the Site. The bedrock surface generally slopes to the west in this area. Review of MECP Well records for the area (**Appendix E**) indicates that there are eighteen (18) wells within 500 m of the Site that were drilled to bedrock. Bedrock elevations in the MECP Well records vary greatly, ranging from 202 to 242 m amsl in this area. Bedrock was not encountered during the drilling program completed as part of this investigation.

3.4.2 Overburden Geology

The physiography of Southwestern Ontario was altered significantly by the glacial and interglacial periods that took place throughout the Quaternary period. The overburden deposits which are present in the study area were formed by numerous glacial events during the late Wisconsinan glacial stage approximately 10,000 to 23,000 years before present. There were two distinct glacial lobes present in Southwestern Ontario during this period. The Huron Lobe advanced from Lake Huron southwards, and the Erie Lobe advanced from the northeast, receding to the east.

During the advancement of the glacial ice sheets, bedrock and unconsolidated sediments were eroded. During the recession of the glaciers, the eroded materials were deposited in lakes, rivers and along spillways, contributing to the present configuration of moraines, abandoned spillways, drumlins, eskers, abandoned shorelines, and various still-water sediment deposits.

Deposits in the area can be contributed to the Port Bruce Stadial period. In the London area, a series of east-west recessional and end moraines were formed, along with the Port Stanley Till Plain. Deposition of the basal portion of the Port Stanley Till was formed during the initial advance of the Erie Lobe. Overlying till was deposited during subsequent cycles of advance and retreat, resulting in silt and sand layering within the till plain.

The surficial deposits were mapped and categorized into a number of physiographic regions by Chapman and Putnam (1984). The Site is part of the physiographic region known as the Stratford Till Plain (**Drawing 6**). The Site is located on a spillway (**Drawing 7**).

Quaternary mapping from the UTRCA Map 4 (2005) indicates that the quaternary geology at the Site consists largely of modern alluvial deposits with a small area in the very west of the Site mapped as glaciofluvial deposits (**Drawing 8**).

Surficial geology has also been described by Ontario Geological Society MRD128 (OGS, 2010) as being modern alluvial deposits consisting of clay, silt, sand, and gravel across the entire Site. A fluvial terrace is mapped to be present to the northeast and southwest of the Site (**Drawing 9**).

3.4.3 Site Specific Surficial Geology

Nine (9) boreholes were completed by EXP in seven (7) locations across the west portion of the Site, with installation of monitoring wells in six (6) borehole locations. Two (2) of the locations were completed as 'nested' wells to allow for hydrogeological evaluation of the shallow and deep aquifers and potential vertical gradients. The locations of the boreholes are provided in **Drawing 2**. The boreholes were terminated at a maximum depth of between 3.0 and 15.7 m below existing grade. Borehole logs are provided in **Appendix C**.

A generalized stratigraphic cross section through the Site, as shown in **Drawing 10**, is provided as **Drawing 11**. The cross section includes a private well to the east of the property from the MECP Water Well Records (WWR). The surficial geology of the Site is characterized as having an unconfined sand aquifer overlying the majority of the Site and continuing under the landscaped pond feature. The east side of the Site and the slope consist of clayey silt till with a sand and gravel unit on top. Below the unconfined sand aquifer found across the Site is a clayey silt till confining layer. This confining layer ranges in thickness from approximately 2.5 to 4.5 m across the Site. Underlying the confining till is a confined sand and gravel aquifer.

A total of two (2) grain size analyses were completed from samples collected during drilling at BH1 and BH2. The grain size results are discussed in **Section 4.6** *Hydraulic Conductivity*. Laboratory results and graphs are provided in **Appendix D**.

4. Hydrogeologic Setting

In addition to the groundwater information collected from the monitoring wells installed at the Site, the following documents were reviewed to gain an understanding of the hydrogeological conditions in the area:

- Dillon Consulting Limited and Golder Associates Ltd. Middlesex-Elgin Groundwater Study, Final Report, submitted to Middlesex and Elgin Counties, dated July 2004, henceforth referred to as the Middlesex-Elgin Groundwater Study;
- Goff, K and D.R. Brown, 1981. Ground-Water Resources Summary. Thames River Basin Water Management Study Technical Report. Ontario Ministry of the Environment, Water Resources Report 14;
- Thames-Sydenham and Region Source Protection Committee. 2011. Upper Thames River Source Protection Area, Approved Updated Assessment Report. 12 August; and,
- MECP Water Well Records (WWR) within 500 m of the perimeter of the Site.

4.1 Regional Aquifer

Goff and Brown (1981) described the potential for four regional aquifers in the study area; shallow unconfined overburden aquifer, intermediate and deep confined aquifers and a bedrock aquifer.

4.1.1 Overburden Aquifers

The uppermost shallow and unconfined overburden aquifer was described as consisting of lacustrine or glacio-fluvial sands that may, in some locations, be overlain by lower permeability silts and clays. Regionally, the shallow aquifer is generally associated with the Stratford Till Plain and glacial deposits and are typically less than 15 m in thickness. Shallow overburden aquifers are discontinuous in nature and are expected to be linked more directly to precipitation and recharge compared to the intermediate and deep overburden aquifers.

Intermediate depth (15 to 30 m below ground surface (bgs)) and deep overburden aquifers (>30 m bgs) aquifers generally consist of saturated sand and gravel deposits in the overburden and are very discontinuous in nature due to the heterogeneous nature of glacial deposits. Sand and gravel layers are present in the Port Stanley and Catfish Creek glacial till sheets. The intermediate depth and deep overburden aquifers are generally confined by overlying silt, clay and glacial till deposits which limit vertical migration of shallow groundwater.

Locally, shallow groundwater flow is expected to follow the local topography, and generally drain towards the south and west towards the unnamed drain and the North Thames River. On a regional scale, the deep overburden aquifer flow direction is reported to be towards the south-southwest (Dillon and Golder, 2004).

Based on the well record information reviewed for this investigation (discussed below), the occurrence of shallow overburden water supply wells in the immediate vicinity of the Site is high.

4.1.2 Bedrock Aquifer

The bedrock aquifer is contained within limestone of the Dundee Formation. The water quality is generally good with elevated levels of iron, sodium and chloride in some wells. As with the intermediate and deep overburden aquifers, the bedrock aquifer is confined by the overlying till material, which generally ranges in thickness up to 17 m in the vicinity of the Site. Wells extending into the shallow fractured bedrock (up to about 3 m) are typically considered to be hydraulically connected to the overlying sand and gravel deposits that are present at the bedrock-overburden interface.

Flow direction in the deeper confined aquifer(s) and regional groundwater system has not been assessed as part of this investigation. However, as part of the Middlesex-Elgin Groundwater Study (Dillon and Golder, 2004), groundwater flow within the deeper aquifer is generally in a south-southwest direction towards Lake Erie.

4.2 MECP Water Well Records

A search of the Ontario Ministry of Environment, Conservation and Parks (MECP) Water Well Records (WWR) database resulted in the identification of 73 records for an area within approximately 500 m of the Site boundary. Identified wells are located surrounding the Site (**Drawing 12**), with the majority of the domestic wells to the north and east, and most wells to the west and south identified as monitoring wells or test holes.

Water uses in the area include the following:

- Domestic (31 wells);
- Monitoring or test holes (30 wells);
- Municipal (1);
- Commercial (1);
- Irrigation (1);
- Unknown (1); and
- 8 abandoned wells.

The approximate locations of identified wells are shown on **Drawing 12**, with the MECP WWR Summary provided in **Appendix E**.

Domestic water supply in the local area wells are generally drawing from the confined intermediate sand and gravel aquifer or from the bedrock aquifer. Six (6) domestic wells within 500 m of the Site, as well as the one (1) commercial well and one (1) irrigation well are reported as being less than 10 m deep. These wells were all installed between 1966 and 1985 and may no longer be in use as much of the surrounding area is now developed and on municipal servies.

4.3 Door to Door Well Survey

Municipal services are available in the new developments located to the west and south of the Site. A door-to-door survey was completed along Kilally Road and Webster Street where most domestic wells were noted in the MECP WWRs to confirm whether the shallow domestic wells are still in use.

To date, 11 responses have been received by EXP, and are summarized in Table 3, with full responses provided in **Appendix F**.

Address	Response Received			
1410 Kilally Road	Municipal Water – No well present			
1414 Kilally Road	Municipal Water – No well present			
1449 Kilally Road	Private Well- Drilled well, depth unknown, used for gardening Property is also connected to municipal water			
1461 Kilally Road	Private Well- Depth unknown Property is also connected to municipal water			
1481 Kilally Road	Private Well- 4.9 mbgs dug well used for gardening and car wash Property is also connected to municipal water			
1417 Webster Street	Private Well- 25 mbgs drilled well, static water level at 9.1 mbgs No connection to municipal water			
1419 Webster Street	Private Well- 21-27 mbgs drilled well No connection to municipal water			
1421 Webster Street	Private Well- 27.4 mbgs drilled well No connection to municipal water			
1461 Webster Street	Private Well- 29.3 mbgs drilled well No connection to municipal water			
1467 Webster Street	Private Well- 25 mbgs drilled well, static water level at 15.5 mbgs No connection to municipal water			
1471 Webster Street	Private Well- 24.4 mbgs drilled well, static water level at 15.5 mbgs No connection to municipal water Has requested water levels be collected prior to construction activities			
1479 Webster Street	 2 private wells: - 8.8 mbgs dug well, 1.8 mbgs static water level - 23.2 mbgs drilled well, 15.5 mbgs static water level No connection to municipal water Has requested water levels and water quality be collected prior to construction activities 			
1500 Highbury Avenue North	Municipal Water – No well present			
1504 Highbury Avenue North	Municipal Water – No well present			
1510 Highbury Avenue North	Municipal Water – No well present			
1516 Highbury Avenue North	Municipal Water – No well present			
1520 Highbury Avenue North	Municipal Water – No well present			

Table 3 – Well Survey Questionnaire Response Summary

Based on the results from the door-to-door survey, it has been confirmed that a number of residences along Webster Street are still utilizing private well water as there are no municipal services along this road.

The owners of 1471 and 1479 Webster Street have requested water levels (both) and water quality (1479 Webster only) be collected prior to construction activities. In particular, 1479 Webster Street has noticed some water level changes in his shallow private well, which he assumes is from the recent construction to the northeast of his property. It is recommended that additional communication be established with these property owners prior to any construction or construction dewatering activities in order to address their concerns. Considering a Category 3 Permit to Take Water (PTTW) will be applied for in relation to construction dewatering, these details will also be included in the PTTW report.

4.4 Site Specific Groundwater Elevations and Flow

Manual water levels in the monitoring wells were collected monthly starting in June 2020 until July, 2021. Details of the monthly water levels are summarized in **Appendix G**.

Dataloggers were installed in two (2) monitoring wells (monitoring wells BH3/MW-A and BH3/MW-B) to provide continuous groundwater elevation monitoring. Dataloggers were installed on July 27, 2020 and collected daily measurements until July 12, 2021. The dataloggers currently remain in the monitoring wells for ongoing measurements until the site has been approved. Datalogger results are presented as hydrographs in **Appendix G**. Manual measurements generally correlate well with datalogger with the exception of two (2) manual measurements in BH3/MW-B from December 15, 2020 and March 17, 2021 and three (3) manual measurements in P-1 from January 21, February 24, and April 23, 2021 that are interpreted to be erroneous. Precipitation data from the London CS station is included on the hydrographs to identify whether surface recharge influences groundwater elevations.

The highest groundwater elevation collected on Site was collected in monitoring well BH3/MW-A (deep) with an elevation of 244.96 m amsl on April 14, 2021. The lowest groundwater elevation collected on Site was measured in monitoring well BH1/MW in February 2021 at an elevation of 243.12 m amsl.

BH3/MW-A Hydrograph (Deep)

The hydrograph for monitoring well BH3/MW-A does not show great variability in groundwater elevation between July and October 2020. From October, groundwater elevations in BH3/MW-A are more responsive to precipitation event and snow melt. It is likely, that purging the well for water quality sampling on October 17, 2020 cleared the screen from smearing effects which resulted in more responsive groundwater elevations. Based on historic weather data from the London CS station, mean temperatures above 0 degrees Celsius were noted from February 24, 2021 resulting in snow melt and higher groundwater elevations. The groundwater elevation well response in BH3/MW-A (deep) to seasonal fluctuations suggests the intermediate, confined aquifer in which this well is installed is not fully confined and is hydraulically connected to the shallow aquifer.

BH3/MW-B Hydrograph (Shallow)

The hydrograph for monitoring well BH3/MW-B show immediate responses to precipitation events, as is evident on the hydrograph shown in **Appendix G**. The elevations of this shallow nested well are consistently lower then the deeper well, suggesting that the deeper well is under hydrostatic pressure conditions. This shallow well also shows very similar groundwater elevations to the measurements collected in the piezometer P-1, indicating that both of

these installations were in the same aquifer, and indicates connectivity between the shallow aquifer and the landscape pond.

Shallow groundwater flow across the Site is affected by hydraulic conductivity, topography, drainage, and geology. Shallow and deep groundwater elevation maps were created based on groundwater measurements collected from monitoring wells screened in the shallow and intermediate aquifers on March 17, 2021. Based on the groundwater elevations across the Site it is determined that shallow groundwater is generally flowing in a northwest-northeast direction and deep groundwater is generally flowing to the southwest. Groundwater elevations and flow direction are presented in **Drawing 13** and **Drawing 14**.

4.4.1 Landscaped Pond

Dataloggers were installed in the piezometers (P-1 and P-2) located within the landscaped pond in Station 1 and Station 2, respectively. The piezometers were installed into the underlying sand and gravel. The hydrographs of the piezometers are in **Appendix G**. Similarly to monitoring well BH3/MW-B (shallow), groundwater elevations measured in P-1 fluctuated in response to precipitation and snow melt events indicating the landscape pond is hydraulically connected to the shallow aquifer in which BH3/MW-B is installed. Groundwater elevations in P-1 ranged from 243.47 and 244.24 m amsl. Surface water elevations at the staff gauge ranged from 243.55 and 244.25 m amsl and were generally lower than groundwater elevations at P-1 suggesting upwelling conditions at the landscape pond.

The P-2 hydrograph shows a response to precipitation events on March 26 and April 12, 2021. Due to dry conditions between July 27, 2020 and March 17, 2021 information regarding groundwater elevations at this location is limited.

4.4.2 Hydraulic Gradients

The horizontal hydraulic gradient across the Site will vary due to the range in topography and resulting range in groundwater elevations. The hydraulic gradient is found to be approximately 0.01 m/m across the Site.

In both nested monitoring wells BH2/MW-A/B and BH3/MW-A/B groundwater elevations collected indicate an upward gradient and discharge conditions.

4.5 Hydroperiod and Recharge

Data Reference is made to the TRCA document Stormwater Management Criteria, Appendix D: Water Balance for Protection of Natural Features (August 2012). By definition, the hydroperiod is the seasonal pattern of water level fluctuation. It is the result of inflow and outflow, surface contours of the landscape, substrate and groundwater conditions. Defining the existing surface water and groundwater conditions in the area is essential in order to provide recommendations, mitigation strategies and contingency measures during the development of the property.

As discussed in Section 4.4 above, there are two groundwater bearing units present on the Site. The shallow system occurs within the shallow sandy aquifer and the second groundwater bearing unit is the underlying sand and gravel aquifer. The difference in static water level between the two aquifers is less than a meter. Both aquifers have had a consistent upward gradient during the monitoring period, indicating discharge conditions on Site. The response of the deeper aquifer to seasonal fluctuations with a similar pattern to the shallow aquifer suggest the deeper aquifer is hydraulically connected to the shallow aquifer and is not fully confined.

EXP Services Inc. Final Report Project Name: Proposed Apartment Complex - 1470 – 1474 Highbury Avenue North, London, ON Project Number: KCH-00260285-A0 Date: November 2, 2021 16

Water level monitoring on the Site was completed for a 12-month period, beginning July 2020. The range in manual groundwater elevations measured across the Site (a measurable component of a hydroperiod) throughout the monitoring period is shown in **Table 4** below. The newly installed monitoring well BH104/MW has not been included as only four (4) months of data is available and does not represent an annual comparable range. As shown in **Table 4**, the largest variation in manual water levels occurs in the northwest portion of the Site at BH2/MW-A/B, with a range of 1.10 m.

Location ID	Minimum Groundwater Elevation (m amsl)	Maximum Groundwater Elevation (m amsl)	Range (m)
BH1/MW	243.12	244.01	0.89
BH2/MW-A	243.57	244.67	1.10
BH2/MW-B	243.43	244.53	1.10
BH3/MW-A	244.42	244.84	0.42
BH3/MW-B	243.42	244.47	1.05
P-1	243.50	244.22	0.72
P-2	243.63	244.10	0.47

Table 4: Hydroperiod as defined by Manual Measurements

Typically, groundwater recharging conditions are occurring on Site from approximately October to April, as observed in the hydrographs (BH3/MW A/B and P-1). Throughout the recharging seasons in 2020 – 2021, there were approximately four (4) separate surges of recharge which are seen on the hydrographs. The magnitude of groundwater increase during these surges is as follows:

- August 27 to September 10, recharge of 0.2 m over 14 days (average of 0.01 m per day);
- March 25 to March 27, recharge of 0.14 m over 2 days (average of 0.07 m per day);
- April 12 to April 18, recharge of 0.09 m over 6 days (average of 0.02 m per day); and,
- June 25 to July 1, recharge of 0.19 m over 6 days (average of 0.03 m per day).

Therefore, during recharging events, the aquifer is found to recharge on the order of 0.01 m to 0.07 m per day.

Additionally, recharging conditions are occurring from roughly December to April as observed in the hydrographs. Warmer temperatures and snow melt beginning at the end of February 2021 also resulted in significant groundwater recharge.

Groundwater recharge did not occur from approximately early-January to late-February, 2021, as can be seen in all the hydrographs. Minimal precipitation was recorded during this period, in addition to very cold seasonal temperatures. The combination of minimal precipitation and cold temperatures was likely the reason why limited (or no) groundwater recharge occurred during this time.

The piezometer P-1 located within the landscape pond shows similar water level fluctuations and recharge surges as BH3/MW-A/B. Due to extensive dry conditions at P-2, information regarding recharge conditions is minimal at this location.

Throughout the monitoring period, surface water was present and fluctuated in a similar manner as in BH3/MWA-B and P-1.

4.6 Hydraulic Conductivity

Single well recovery tests (SWRT) were performed on three (3) monitoring wells on Site (BH3/MW-A, BH3/MW-B and BH104/MW) to evaluate the hydraulic characteristics of the upper and lower sand aquifer units. The results of the tests are summarized in **Table 5**, and the calculations are presented in **Appendix H**. The results provide information regarding the hydraulic conductivity of the soils surrounding the well screen.

Based on these tests the hydraulic conductivity of the upper sand and gravel was found to be 4.2×10^{-5} m/s and the underlying sand and gravel unit was found to be 7.8×10^{-6} m/s. Literature values for hydraulic conductivities range from 10^{-5} to 10^{-2} m/s for sand (Table 2.2, Freeze and Cherry; 1979). The underlying sand and gravel unit is therefore slightly below this typical range.

Also, the hydraulic conductivity results for the underlying sand unit encountered in borehole BH104/MW was found to be 3.0×10^8 m/s. This value is quite low for a unit classified as a sand, however the unit was logged in the field as fine to medium grained and dense to very dense (see borehole log in **Appendix C**).

Grain size analyses were carried out on select soil samples collected from the boreholes, with results summarized in **Table 5**, and shown graphically in **Appendix D**.

A total of two (2) soil samples from Site were selected for grain size distribution analysis testing. Due to the nature of the Site soils, estimated hydraulic conductivity (K) values were determined using the Kozeny-Carman method.

Based on the grain size analyses, the hydraulic conductivity for the upper and lower sand and gravel aquifers is 4.7×10^{-5} m/s. The results of all hydraulic conductivity testing to date are compiled in the table below.

Table 5 – Hydraulic Conductivity Results

Sample ID	Lithology	Hydraulic Conductivity (m/s)		
BH3/MW-A	Sand and Gravel (deep/lower aquifer)	7.8 x 10 ⁻⁶		
BH3/MW-B	Sand and Gravel (shallow/upper aquifer)	4.2 x 10 ⁻⁵		
BH104/MW	Sand	3.0 x 10 ⁻⁸		
Grain Size Analyses				
BH1/MW, Sa 7 (6.1 – 6.6 m deep)	Sand and Gravel (deep/lower aquifer)	4.7 x 10 ⁻⁵		
BH2/MW, Sa 2 (1.5 - 2 m deep)	Sand and Gravel (shallow/upper aquifer)	4.7 x 10 ⁻⁵		

4.7 Groundwater and Surface Water Quality

Groundwater and surface water sampling was completed on October 17, 2020 and March 17, 2021. A total of two (2) groundwater monitoring wells (BH3/MW-A and BH3/MW-B) and one (1) surface water location (SW Station 1) was selected for sampling. Water quality tables are presented in **Appendix I** and complete laboratory chain of custody results are provided in **Appendix J**.

Groundwater quality was compared to the Ontario Drinking Water Quality Standards, Objectives and Guidelines (ODWQS) (O.Reg. 169/03). Although the groundwater on Site is not planned for use as drinking water, these guidelines are used for comparison sake only. As demonstrated in the tabulated results in **Appendix I**, none of the parameters tested exceeded the ODWQS guidelines for any of the wells tested on October 17, 2020 and March 17, 2021.

Surface water quality was compared to Ontario Provincial Water Quality Objectives (PWQO) (MOEE 1994). The PWQO guideline for iron (300 ug/L) exceeded during both sampling events (27000 ug/L in October 2020 and 310 ug/L in March 2021). During the sampling event on October 17, 2020 surface water Station 1 also exceeded the PWQO for aluminum, arsenic, cadmium, chromium, cobalt, copper, lead, silver, vanadium and zinc. All the remaining tested parameters met PWQO guidelines for both sampling events. Complete chain of custody laboratory results are provided in **Appendix J**.

A Piper Diagram was prepared for the groundwater and surface water quality samples collected on October 17, 2020 and March 17, 2021 and is shown in **Drawing 15**. The water quality results generally plot within the calcium magnesium bicarbonate alkaline zone of the Piper Diagram. The groundwater and surface water quality results are all generally quite similar, especially the surface water samples and monitoring well BH3/MW-B (shallow), further suggesting interaction of the shallow groundwater table and the landscaped pond.

Schoeller Diagrams were also prepared for the groundwater and surface water quality samples collected on October 17, 2020 and March 17, 2021 for Major and Minor Ions (**Drawings 16a and 16b**). The groundwater samples between the shallow and deep nested wells are similar for both the Major and Minor Ions, indicating likely some interaction between aquifers. The groundwater samples differ from the surface water samples for some Major Ions (Ca, Mg, Ma) as the surface water samples show orders of magnitude higher concentrations. Chloride and sulphate which can be used as chemical tracers were similar in the surface water sample SW1 and the wells BH3/MW-A and BH3/MW-B, indicating the landscape pond water quality is likely connected to the shallow and intermediate aquifers which discharge into the pond.

5. Monthly Water Balance Assessment

The monthly water balance assessment for the Site was completed in accordance with the recommendations indicated in the guidance document "Hydrogeological Assessment Submissions: Conservation Authority Guidelines to Support Development Applications" (Conservation Ontario, 2013), and using appropriate site condition values obtained from Table 3.1 of the MOE Stormwater Management Planning and Design Manual (MOE, 2003).

The water balance accounts for all water in and out-flows in the hydrologic cycle. Precipitation (P) falls as rain and snow. It can then run off towards wetlands, ponds, lakes, and streams (R), infiltrate into the ground (I), or evaporate from surface water and vegetation (ET). When long-term average values of P, R, I, and ET are used, then minimal or no net change to groundwater storage (Δ S) is assumed.

The annual water balance can be stated as follows:

 $\mathsf{P} = \mathsf{ET} + \mathsf{R} + \mathsf{I} + \Delta \mathsf{S}$

Where:

P = precipitation (mm/year)

ET = evapotranspiration (mm/year)

R = runoff (mm/year)

I = Infiltration (mm/year)

 ΔS = change in groundwater storage (taken as zero) (mm/year)

5.1 Precipitation and Evapotranspiration

The annual total precipitation used for this water balance (1011 mm/yr) is based on data provided by Environment Canada, based on the 30 year average data for climate normals, using the nearest local weather station information (London, ON). In this detailed monthly water balance, precipitation as rain and snow are both considered. Snow storage and resulting snow melt in the winter and early spring months is considered as part of the evapotranspiration volumes.

Evapotranspiration combines evaporation and transpiration and refers to the water lost to the atmosphere. The rate of evapotranspiration is a function of the water holding capacity of the soil and varies with soil and vegetation type and amount of impermeable surface cover.

Monthly evapotranspiration volumes were calculated using the monthly water balance graphical interface created by the U.S. Geological Survey (USGS), Open-File report 2007-1088 (McCabe and Markstrom, 2007). This interface uses the principles outlined by Thornthwaite and Mather (1957) and permits the user to easily modify water balance parameters and provide useful estimates of water balance components for a specified location.

The difference between the annual precipitation and the annual evapotranspiration represents the surplus water which is available for infiltration and surface run-off. Distribution of the surplus water to infiltration is based on an infiltration factor based on site conditions for topography, cover vegetation and soil.

5.2 Infiltration, Runoff and Recharge

The soil water holding capacities and infiltration rate were determined using values presented in Table 3.1 of the MOE Stormwater Management Planning and Design Manual (MOE, 2003) based on the vegetative cover and the hydrologic soil group. The weighted values based on the Site conditions are presented in the calculation sheets provided in Appendix K.

Localized infiltration rates will vary based on factors such as the saturated hydraulic conductivity of surface soils, land slope, rainfall intensity, relative soil moisture at the start of a rainfall event, and type of cover on the ground surface.

The soils at the Site were not mapped by the Ministry of Agriculture, Food and Rural Affairs. Based on borehole logs, the surficial soils at the Site are A-type soils (fine sand).

Typically, groundwater recharging conditions are occurring from approximately October to April, as observed in BH3/MW-A/B and P-1. Snow melting conditions in late February (i.e. a jump in groundwater elevations) can be observed on the hydrographs.

5.3 Pre-development and Post-development Calculations

Pre-development and Post-development monthly water balance calculations have been carried out and are based on available design data. This water balance will be provided to the stormwater engineer for consideration as part of the design of the proposed SWM strategy for the Site.

In general, the site comprises a land area of approximately 1.59 hectares. To complete the Pre-development water balance, the Site was divided into two (2) drainage areas: Area 1 (0.8 ha) with drainage to the north; and Area 2 with drainage to the landscape pond (0.79 ha). These drainage areas are presented in **Appendix K**.

Existing conditions across the Site result in varying water holding capacities and infiltration factors. Each drainage area was individually estimated for the present coverage of vegetation under Pre-development conditions. Calculation worksheets are provided in **Appendix K**.

Post-development calculations have been completed based on the current Development Plan, as included in **Appendix B**. Detailed assumptions for the post-development water balance are included in **Appendix K**. Based on the Development Plan, the proposed development will be entirely contained within drainage Area 1 draining to the north and drainage Area 2 will remained undeveloped post-construction.

Table 6 provides a summary of the pre and post development water balance calculations.

	Pre Development (m³/year)	Post Development (m³/year)	% Difference	Post Development with Mitigation (m ³ /year)	% Difference with Mitigation
Estimated Runoff	1,720	5,658	229%	3,395	197%
Estimated Infiltration	1,884	425	-77%	1,557	83%

Table 6: Summary of Water Balance Estimates for Area 1

Conservation Ontario Guidelines (Conservation Ontario, 2013) suggest a target of 80% of the pre-development infiltration being maintained in the post-development conditions. A 40% reduction in runoff would allow for post-development infiltration to be 83% of the pre-development infiltration, which exceeds the target of 80%.

Due to the increased impermeable surfaces (such as rooftops, roadways, sidewalks, driveways), the proposed development is expected to result in a reduction in the post-development infiltration level, and a corresponding increase in the estimated run-off. The use of secondary infiltration opportunities and run-off reduction techniques to improve post development infiltration is described below.

5.4 Low Impact Development (LID) Practices

Low Impact Development (LID) is a stormwater management strategy that seeks to mitigate the impacts of increased runoff and stormwater pollution by managing runoff as close to its source as possible (TRCA, 2010). Effective management of stormwater is critical to the continued health of our streams, rivers, lakes, fisheries and terrestrial habitats. The primary objectives of stormwater management include maintaining the hydrologic cycle, protecting water quality, and preventing increased erosion and flooding.

The following list provides some mitigation measures which may be taken into consideration, during the detailed design stage of the development. These measures may include secondary infiltration by directing and capturing runoff water from impervious surfaces into landscaped areas where existing infiltration capacity can be utilized. More specifically, considerations may include the following:

- Landscaped areas should be graded to promote infiltration of surface water. Increased topsoil depth throughout yard and green space areas to reduce runoff. In general, a run-off reduction up to 30% may be possible in areas where increased topsoil thicknesses are utilized depending on final topsoil thickness, storm duration and intensity;
- Collection of rooftop run-off into side yard and rear yard swales and/or vegetative filter strips, which can be directed to infiltration trenches to promote infiltration;
- Installation of linear bioswales to collect and promote infiltration;
- Routing pavement runoff to grassed areas;
- Planting of trees and bushes; and,

- Installing oil/grit separators.

It is noted that water quality will need to be accounted for in the design of any mitigation measure, such as permeable pavers and pervious pipes, to account for potential impacts from contaminate sources such as winter maintenance on roads and parking lots.

If LID measures are being considered as part of the post-development design, consideration should be given to conducting field percolation tests, at proposed LID locations.

In terms of maintaining infiltration rates in post-development, the most effective stormwater management practices include installing infiltration trenches, lot grading, roof leader discharge to soakaway pits/pervious areas, using pervious pipes, and installing pervious catch-basins.

It is recommended that some of these practices be utilized in site planning and design in order to mitigate the impact of increased runoff and stormwater pollution. By implementing LID practices during development, infiltration volumes can be effectively stored and returned to the natural environment by various development technologies and methods described above.

6. Construction Dewatering Calculations

Construction dewatering calculations have been compiled for the following assumptions:

- Cut-off walls will be installed into the underlying till, to depths of approximately 232.7 mASL (13.3 mgbs). Both upper and lower aquifers are anticipated to be cut-off during construction activities;
- Highest groundwater elevations on site are 244.84 mASL;
- Excavations of 100 m x 25 m;
- Lowest slab elevation is 236.29 mASL;
- Lowest foundation elevation is 234.79 mASL;
- Top of underlying till confining unit is 232.6 mASL;
- Toe elevation of caisson wall is 232.6 mASL;
- The hydraulic conductivity value of the sand and gravel is 4.2E-05 m/s;

Detailed dewatering spreadsheets will be provided in the Category 3 PTTW report, however, it is assumed that dewatering of over 400,000 L/day will be required to remove the groundwater from within each caisson wall (cut-off wall) excavation.

7. Sourcewater Protection Considerations

7.1 Significant Groundwater Recharge Areas (SGRA)

Groundwater recharge is largely controlled by soil conditions, and typically occurs in upland areas. The groundwater flow direction has been previously identified as flowing in a southwesterly direction.

As defined in the Clean Water Act (2006), an area is a significant groundwater recharge area if,

1. the area annually recharges water to the underlying aquifer at a rate that is greater than the rate of recharge across the whole of the related groundwater recharge area by a factor of 1.15 or more; or

2. the area annually recharges a volume of water to the underlying aquifer that is 55% or more of the volume determined by subtracting the annual evapotranspiration for the whole of the related groundwater recharge area from the annual precipitation for the whole of the related groundwater recharge area.

An assessment report for the Upper Thames River Source Protection Area was completed by the Thames-Sydenham and Region Source Protection Committee. As defined by the Clean Water Act (2006) and identified by the Thames-Sydenham and Region Source Protection Committee, the Site is located outside of a SGRA (**Drawing 17**), however the areas to the east and south are within a SGRA with a vulnerability of 6.

7.2 Highly Vulnerable Aquifers (HVA)

The susceptibility of an aquifer to contamination is a function of the susceptibility of its recharge area to the infiltration of contaminants. As defined in the *Clean Water Act (2006)*, the vulnerability of groundwater within a source protection area shall be assessed using one or more of the following groundwater vulnerability assessment methods:

- 1. Intrinsic susceptibility index (ISI).
- 2. Aquifer vulnerability index (AVI).
- 3. Surface to aquifer advection time (SAAT).
- 4. Surface to well advection time (SWAT).

In the Thames-Sydenham and Region, HVAs were mapped using the ISI method. The ISI method is an indexing approach using existing provincial Water Well Information System (WWIS) database. The ISI method is described in detail in the MECP's Technical Terms of Reference (2001). However, in short, the ISI method is a scoring system that takes into consideration the unique hydrogeologic conditions at a particular location. The scores are determined using a combination of the saturated thickness of each unit and an index number related to the soil type, and as such, the scores reflect the susceptibility of the aquifer to contamination.

As defined in the MECP's 2001 Technical Rules,

- an area having an ISI score of less than 30 is considered to be an area of high vulnerability;
- an area having an ISI score greater than or equal to 30, but less than or equal to 80, is considered to be an area of medium vulnerability; and,
- an area having an ISI score of greater than 80 is considered to be an area of low vulnerability.

The Thames-Sydenham and Region Source Protection Committee has determined, using the ISI method, that nearly the entire Site is located within an HVA area, except for an area in the southwest corner of the Site (**Drawing 18**).

8. Impact Assessment

8.1 Water Well Users

Several potable wells in the area are sourced from the intermediate sand and gravel aquifer which is confined below the clayey silt till. According to the MECP WWR within 500 m of the Site, six (6) domestic wells, one (1) commercial, and one (1) irrigation well were noted to be installed at depths less than 10 mbgs.

The door-to-door survey resulted in responses from multiple private well owners, including the owners of 1471 and 1479 Webster Street. Both of these private well owners voiced concern over the potential construction dewatering for the Site and requested water levels and water quality (1479 Webster only) be collected prior to construction activities. In particular, 1479 Webster Street has noticed some water level changes in his shallow private well, which he assumes is from the recent construction to the northeast of his property. It is recommended that additional communication be established with these property owners prior to any construction or construction dewatering activities in order to address their concerns. Considering a Category 3 Permit to Take Water (PTTW) will be applied for in relation to construction dewatering, these details will also be included in that permit application and report.

At this time, it is assumed that construction and construction dewatering activities will be contained within cut-off walls, effectively removing any impact to the surrounding shallow and intermediate aquifers. It is not anticipated that any impact will be observed in any of the surrounding private wells.

Monitoring wells have been installed at the Site as part of the Site investigations to document stabilized groundwater conditions. Prior to the Site grading work, and when the monitoring wells are determined to be no longer required, the wells should be properly decommissioned in accordance with Ontario Regulation 903. Decommissioning a well which is no longer in use helps to ensure the safety of those in the vicinity of the well, prevents surface water infiltration into an aquifer via the well, prevents the vertical movement of water within a well, conserves aquifer yield and hydraulic head and can potentially remove a physical hazard.

8.2 Surface Water Features

8.2.1 Landscaped Pond

A landscaped pond is present on the east side of the Site (**Drawing 2**). As indicated in **Section 4.4**, based on groundwater levels in the monitoring wells, piezometer, and surface water elevations, the landscape pond is directly connected to the shallow groundwater table. The pond is also fed by surface runoff from the eastern portion of the Site. At this time is it assumed that the western portion of the Site, in which the development is proposed, drains to the north of the Site and does not contribute runoff to the landscaped pond.

Considering the construction and dewatering of the Site will be contained within cut-off walls, the shallow aquifer supply to the landscaped pond will not be disrupted. It is important to note that the cut-off walls need to be effectively installed into the underlying till.

8.2.2 General Comments

Based on drainage mapping (**Appendix K**), drainage from the proposed development portion of the Site is expected to flow north. However, as due diligence, the following comments are provided with recommendations to help minimize impact to the landscape pond:

- During the site grading work, suitable sedimentation controls will be required to help control and reduce the turbidity of run-off water;
- A Best Management Practice (BMP) and spill contingency plan (including a spill action response plan) should be in place for fuel handling, storage and onsite equipment maintenance activities to minimize the risk of contaminant releases as a result of the proposed construction activities;
- Re-establishing vegetative cover in disturbed areas following the completion of the construction work;
- Limit the use of commercial fertilizers in landscaped areas which border a habitat feature; and,
- Limit the use of salts or other additives for ice and snow control on the roadways and parking areas.

9. Qualifications of Assessors

EXP Services Inc. provides a full range of environmental services through a full-time Earth and Environmental Services Group. EXP's Environmental Services Group has developed a strong working relationship with clients in both the private and public sectors and has developed a positive relationship with the Ontario Ministry of the Environment, Conservation and Parks (MECP). Personnel in the numerous branch offices form part of a large network of full-time dedicated environmental professionals in the EXP organization.

This report was co-authored by Ms. Kelli Dobbin, G.I.T and Ms. Hagit Blumenthal M.Sc., P.Geo. Ms. Dobbin obtained a Bachelor of Science Degree from the University of Waterloo and has been working in the field for 6 years. She has authored reports for numerous projects including residential and commercial developments that require hydrogeological input, groundwater impact assessments and calculated groundwater removal quantities for shortterm construction.

Ms. Blumenthal has experience in conducting hydrogeological assessments. Ms. Blumenthal is a hydrogeologist and environmental geoscientist with more than 8 years' experience in the environmental field, and is a licensed Professional Geoscientist (P.Geo.) in Ontario. She obtained a Master of Science (M.Sc.) in 2010 from the University of Waterloo and has worked in the Hydrogeological and Environmental fields since then.

This report was reviewed by Ms. Heather Jaggard, M.Sc., P.Geo. Ms. Jaggard is a hydrogeologist and environmental geoscientist with more than 9 years in the environmental field and is a licensed Professional Geoscientist (P.Geo.) in Ontario. She obtained a Master's of Science (M.Sc.) in 2012 from Queen's University in Kingston, and is a Qualified Person (QP) registered with the Ontario Ministry of Environment, Conservation and Parks (MECP). She has worked in the Hydrogeological and Environmental fields since that time. In her professional career for the past few years, Ms. Jaggard has completed numerous hydrogeological assessments and modelling works for land development sites. Environmental site assessments and preparation of submissions for Permit to Take Water (PTTW) have been part of her routine assignments.

10. References

- Barnett, P.J., Cowan, W.R. and Henry, A.P. 1991. Quaternary geology of Ontario, southern sheet; Ontario Geological Survey, Map 2556.
- Chapman, L.J. and Putnam, D.F., 1984. The Physiography of Southern Ontario, Ontario Geological Survey, Special Volume 2, 270p.
- Conservation Ontario. 2013. Hydrogeological Assessment Submissions Conservation Ontario Guidelines to Support Development Applications. June.
- Corporation of the City of London. 2019. Design Specifications & Requirements Manual. Updated August 2019.
- Dillon Consulting Limited and Golder Associates Ltd. (Dillon and Golder). 2004. Middlesex-Elgin Groundwater Study, Final Report, submitted to Middlesex and Elgin Counties.
- Freeze, R. A. and J.A. Cherry. 1979. Groundwater. Prentice-Hall Inc. New Jersey. 604 pp
- Goff, K and D.R. Brown, 1981. Ground-Water Resources Summary. Thames River Basin Water Management Study Technical Report. Ontario Ministry of the Environment, Water Resources Report 14.
- Hewitt D. F. 1972. Paleozoic Geology of Southern Ontario, Ontario Div. Mines, GR105, Map 2254.
- Ministry of the Environment: Water Well Records. https://www.ontario.ca/environment-and-energy/map-well-records.
- Ministry of the Environment (MOE). 2001. Groundwater Studies 2001/2002, Technical Terms of Reference
- Ministry of the Environment (MOE). 2003. Stormwater Management Planning and Design Manual.
- Ministry of the Environment (MOE). 2008. Technical Rules: Assessment Report, Clean Water Act, 2006
- Ministry of Environment and Energy (MOEE). 1994. Water Management Policies, Guidelines, Provincial Water Quality Objectives of the Ministry of Environment and Energy. Reprinted: February 1999.
- Ontario Department of Mines. 1978. St. Thomas Sheet, Southern Ontario, Bedrock Topography Series, Map P 482.
- Ontario Department of Mines and North Affairs. 1972. 1:253,440 scale, Physiography of the Southwestern Portion of Southern Ontario. Ontario Geological Survey, Map 2225.
- Ontario Geological Survey (OGS). 2010. Surficial geology of Southern Ontario, Miscellaneous Release--Data 128-REV.
- Ontario Geological Survey (OGS). 2011. Bedrock Geology of Ontario, 1:250 000 scale, Miscellaneous Release Data 126-Revision 1.
- Steenhuis T.S. and W.H. Van Der Molen. 1986. The Thornthwaite-Mather Procedure as a Simple Engineering Method to Predict Recharge. Journal of Hydrology, 84. p. 221–229.

- Thames-Sydenham and Region Source Protection Committee. 2011. Upper Thames River Source Protection Area, Approved Updated Assessment Report. 12 August.
- Thornthwaite, C. W. & J. R. Mather. 1957. Instructions and Tables for Computing Potential Evapotranspiration and the Water Balance. Centerton, N.J., Laboratory of Climatology, Publications in Climatology, v. 10, no. 3, p. 185-311.
- Toronto and Region Conservation Authority and Credit Valley Conservation Authority (TRCA and CVC) 2010. Low Impact Development Stormwater Management Planning and Design Guide. Version 1.0.

30

31

11. General Limitations

The information presented in this report is based on a limited investigation designed to provide information to support an assessment of the current environmental conditions within the subject property. The conclusions and recommendations presented in this report reflect Site conditions existing at the time of the investigation. Consequently, during the future development of the property, conditions not observed during this investigation may become apparent. Should this occur, EXP Services Inc. should be contacted to assess the situation, and the need for additional testing and reporting. EXP has qualified personnel to provide assistance in regard to any future geotechnical and environmental issues related to this property.

Our undertaking at EXP, therefore, is to perform our work within limits prescribed by our clients, with the usual thoroughness and competence of the engineering profession. It is intended that the outcome of this investigation assist in reducing the client's risk associated with environmental impairment. Our work should not be considered 'risk mitigation'. No other warranty or representation, either expressed or implied, is included or intended in this report.

The comments given in this report are intended only for the guidance of design engineers. The number of test holes required to determine the localized underground conditions between test holes affecting construction costs, techniques, sequencing, equipment, scheduling, etc. would be much greater than has been carried out for design purposes. Contractors bidding on or undertaking the works should in this light, decide on their own investigations, as well as their own interpretations of the factual borehole results, so that they may draw their own conclusions as to how the subsurface conditions may affect them.

EXP Services Inc. should be retained for a general review of the final design and specifications to verify that this report has been properly interpreted and implemented. If not afforded the privilege of making this review, EXP Services Inc. will assume no responsibility for interpretation of the recommendations in this report

This report was prepared for the exclusive use of **Copia Developments** and may not be reproduced in whole or in part, without the prior written consent of EXP, or used or relied upon in whole or in part by other parties for any purposes whatsoever. Any use which a third party makes of this report, or any part thereof, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. EXP Services Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

We trust this report is satisfactory for your purposes. Should you have any questions, please do not hesitate to contact this office.

Appendix A - Drawings

Proposed Development

1470-1474 Highbury Avenue North, London, Ontario

Copia Develop	opia Developments									
Site Location I	Site Location Plan									
Prepared By: E.B.	repared By: E.B. Reviewed By: H.J.									
EXP Services Inc. 15701 Robin's Hill Road, London, ON, N5V 0A5										
: scale Рассет но. UGUST 2020 1:10.000 КСН-00260285-А0										

- BH1/MW Approximate Borehole Location (June, 2020)
- P1 Approximate Piezometer Location
- 🛛 SG1
 - Approximate Site Boundary
- + BH101 Approximate Borehole Location (March, 2021)

Approximate Staff Gauge Location

Hydrogeological Assessment

Proposed Development

1470-1474 Highbury Avenue North, London, Ontario

 Borehole Location Plan

 Prepared By: J.M.

 Reviewed By: H.B.

 EXP Services Inc.

 15701 Robin's Hill Road, London, ON, N5V 0A5

 Init

 JUNE 2021

 12,000

Image Source: Google Earth Pro (July 2018)

1470-1474 Highbury Avenue North, London, Ontario

15701 Robin's Hill Road, London, ON, N5V 0A5

sc-LE 1:4,000

D-TE AUGUST 2020

project no. KCH-00260285-A0

owg. 4

Fous	haute 78800 79 Course 260 - 763 765	13 797 811 785
6975 - 761 782 707 00 - 761 757	756 754 782 757 756 754 782 9678 50 26 76 7 6 7 701 Curry Rd	5 793 91 783 783
737 743 771 733	30\-7520775_48 736\-7520775_48 736\-745\ 746	791 790 753 775 Ph Came 79
01722 729 (694 01722 729 (694 722 729 (694 722 729 (694 700 708	Pipeline 744 Vard 750	758 PI
678 750 750 750 750 730 718 701	Huron 3t	ark Hielikhik 759
-LEGEND- Approximate Site Boundary 751 Bedrock Surface Elevation in a Well or Test Hole (feet)	Hydrogeological Assessment	Copia Developments Bedrock Topography
Contours on Bedrock Surface (feet) Image Source: Ontario Geological Survey. 1980. Bedrock Topography Series, Bedrock Topography of the Lucan Area, Southern Ontario, Map P291.	Proposed Development 1470-1474 Highbury Avenue North, London, Ontario	Prepared By: E.B. Reviewed By: H.J. EXP Services Inc. 15701 Robin's Hill Road, London, ON, N5V 0A5 Date Protect NC. 15701 Robin's Hill Road, London, ON, N5V 0A5 Date Protect NC. Protect NC. Distribution

1470-1474 Highbury Avenue North, London, Ontario

sc-це 1:40,000 D-TE AUGUST 2020

15701 Robin's Hill Road, London, ON, N5V 0A5

project no. KCH-00260285-A0

ржс. 6

Image Source: Chapman, L.J. and Putnam, D.F. 1984. Physiography of Southern Ontario; Ontario Geological Survey, Map P.2715 (coloured).

lydrogeological	Assessment
-----------------	------------

CROSS SECTION A-A'

	-LI	EGEND-		-NOTES- 1. The boundaries and soil types have been established only at			
Ţ	Groundwater Me	easuremen	t March 2021	borehole locations. Between boreholes they are assumed and may be subject to considerable error.	Ну		
Ā	Groundwater Measurement MECP Well Log			2. The cross section should be read in conjunction with EXP Hydrogelogical Assessment KCH-00260285-A0	Dr.		
\otimes	Topsoil		Sand & Gravel				
	Sand		Sand Silt		1470-1474		
	Clayey Silt Till						

COLOR COLOR TO A COLOR OF A	the second se
	-LEGEND-
	Approximate Site Boundary
\$	Monitoring Well / Test Hole
	Domestic Well
e	Municipal Well
	Commercial Well
	Irrigation Well
٠	Well of Unknown Use
\$	Abandoned Well
ade Source: Good	le Earth Pro (July 2018)

		The Rent March Party Par	entre inte	P PLUCT LAND						
	Copia Develop	oments								
Hydrogeological Assessment	mu Approximate Location of MECP Registered Wells									
Proposed Development	Prepared By: K.D.		Reviewed By: H.J.							
1470-1474 Highbury Avenue North, London, Ontario	*exp. 157	EX 01 Robin's Hill I	(P Services Road, Londo	Inc. on, ON, N5V 0A5						
	DATE SEPTEMBER 2020	scale 1:10,000	PRO. KC	мест но. CH-00260285-A0	dwg. 12					

Image Source: Google Earth Pro (July 2018)

Approximate Borehole Location Surface Water Station Location Approximate Site Boundary (244.47)Shallow Groundwater Elevation (mAMSL), March 17, 2021 Groundwater Equipotential Lines

Inferred Groundwater Flow Direction

Hydrogeological Assessment

Proposed Development

1470-1474 Highbury Avenue North, London, Ontario

CLIENT	Copia Develop	oments								
TITLE	Shallow Grour	hallow Groundwater Flow Plan								
Prepared By: J.M. Reviewed By: H.B.										
^{\$} e	XP. 157	EX 01 Robin's Hill I	(P Servi Road, Lo	ces Inc. ondon, ON, N5V 0A5						
DATE SCALE PROJECT NO. DV July 2021 1:2.000 KCH-00260285-A0 1										

-LEGEND-

- + BH1/MW
- Approximate Borehole Location Station 1 Surface Water Station Location (243.98)

Approximate Site Boundary Groundwater Equipotential Lines

Deep Groundwater Elevation (mAMSL), March 17, 2021 Inferred Groundwater Flow Direction

Hydrogeological Assessment

Proposed Development

1470-1474 Highbury Avenue North, London, Ontario

	CONTRACTOR NO.			A DECK BATTLE COMPANY	and the second se					
CLIENT	Copia Develop	oments								
TITLE	Deep Groundwater Flow Plan									
Prep	Prepared By: J.M. Reviewed By: H.B.									
*e	EXP Services Inc.									
	157	15701 Robin's Hill Road, London, ON, N5V 0A5								
date July 2	2021	SCALE 1.2 000	PROJECT NO. DA KCH-00260285-A0 1							

Image Source: Google Earth Pro (July 2018)

Appendix B – Development Plan

Name of Project:	HIGHBUR	Y AVE RES	SIDENTIAL	DEVELOPM	IENT				and the second sec		
Location:	1470-1474	HIGHBUR	Y AVE. LOI	NDON, ONT	ARIO			- 14. TA			
FEM Ontario 2012 Data Matrix, F	Building Code art 3 or 9	le					OBC References are to D	Reference Division B unless noted	The second se		
1. Project		1	New		L E	Part 11	Part 3	Part 9	B		
Description	je of Use]	Additio	n tion	11,	1 to 11.5	1.1.2. [A]	1.1.2. [A] 9.10.1.3.			
2. Major Occupancy() (Group 'C' - I	RESIDENT	AL OCCUP	ANCY		3.1.2.1. (1)	9.10.2			
3. Building Area (m2)	E	BUILDING '	A & B' 2,590 B' 1.035 sm) sm			1.4.1.2. [A]	1.4.1.2. [A]	BUILD		
4. Gross Area		Evicting		Now 48	665 Total	48 665	1.4.1.2. [A]	1.4.1.2. [A]			
(m2) 5. Number of		Above	18	Be	elow	N/A	1.4.1.2. [A]	1.4.1.2. [A]			
6. Number of Streets	Fire Fighter A	Grade		Gr	rade 2		& 3.2.1.1 3.2.2.10 & 3.2.5.	& 9.10.4 9.10.20			
7. Building Height											
8. Building Classificat	on 3.2.	.2.42 Group	C, Any He	ight, Any Are	aa, Sprinkler	red	3.2.2.2083	9.10.2			
9. Sprinkler System	-		Entire Buil	ding			3.2.2.2083	9.10.8.2	•		
Proposed			Selected (Selected F Basement not require	Compartmen Floor Areas	its ieu of roof ra	ating	3.2.2.17. INDEX	INDEX			
10. Standpipe Require	L —			Yes		No	3.2.9.	N/A			
11. Fire Alarm Require	l An a ta ta ta			Yes		No	3.2.4.	9.10.18			
12. Water Service / Su 13. High Building	ply is Adequ	late		Yes Voc		No	3.2.5.7. 3.2.6.	N/A N/A			
14. Const. Restrictions		Combustibl Permitted	e	Non-Combu Required	ustible	Both	3.2.2.2083	9.10.6			
Actual Const.		Combustibl	e 📕	Non-Combu	ustible	Both					
15. Mezzanine(s) Area	(m2) N/A				-		3.2.1.1.(3)-(8)	9.10.4.1			
16. Occupant Load ba	ed on:		m2/person	d d	esign of buil	lding	3.1.17	9.9.1.3			
17. Plumbing C Facilities: –	cupancy Lo	ad FL Fem	ale W.C.	Fixtures Lav's M	iale W.C.	Lav's	3.7.4 3.7.4.2 3.7.4.3				
18 Barrier Free Deci-			Vec		No		38	952			
19. Hazardous			Yes		No		3.3.1.2. &	9.10.1.3.(4)			
20. Required	Horiz	zontal Asser	nblies	Lis	sted Design	No.	3.3.1.19.	9.10.8			
Fire Resistance	Floor	FRR (Hours	i)	or D	escription (S	5G-2)	3.2.1.4	9.10.9	1 18/10/09 PRE-CONSUL SPA NO. DATE: ISSUED FOR:		
(FRR)	Roof	NO	RATING	Hours			-		THE CONTRACTOR SHALL CHECK AND VERIFY ALL DIMENSION		
	Mezzanine	N/A		Hours	÷ 4		-		DATUMS AND LEVELS PRIOR TO COMMENCEMENT OF WORK. A ERRORS AND ONISSIONS TO BE REPORTED TO THE ARCHITECT BEFORE PROCEEDING. THIS DRAWING IS NOT TO BE SCALED FOR THE PURPOSE OF		
	FRI	R of Suppor Members	rting	Lis or D	ted Design escription (S	No. 3G-2)	-		VERIFYING DIMENSIONS. ALL DRAWINGS, SPECIFICATIONS AND RELATED DOCUMENTS A THE COPYRIGHT PROPERTY OF THE ARCHITECT AND MUST BE		
	Floors	2 NO 1	RATING	Hours		-	-		SPECIFICATIONS AND RELATED DOCUMENTS IN PART OF WHOL IS FORBIDDEN WITHOUT THE ARCHITECT'S WRITTEN PERMISSION THIS DRAWING IS NOT TO BE USED FOR BUILDING PURPOSES		
	Mezzanine	N/A		Hours	-				UNTIL COUNTERSIGNED BY THE ARCHITECT.		
21. Spatial Separation Wall Area	Construction	n of Exterio Permitted	r Walls Proposed	FRR	Listed	Comb.	3.2.3 Comb.	9.10.14 Non-Comb.			
of EFB (m2)	(M) or H/L	Max. % of Openings	% of Openings	(Hours)	Design or Description	Const.	Const. Nonc. Cladding	Const.			
North		openinge	oponnigo				Charlening				
South											
West											
22. Other - Describe		1						1.1			
SITE DATA: N	1(1), OS1	1, UR1 (E	XISTING	;)							
		REQ'D.	/ MAX./ N	IIN.	- 1	PROPOS	ED G 'A' 16 STOREY :				
							G 'B' 18 STOREY :	298 LINITS			
					_	BUILDING	G 'C' 15 STOREY -	102 UNITS			
PROPOSED 70NE	USF	<u> </u>			\rightarrow	VARIAN		400 01115	The second second		
	(13) 	700 50	M (MINI)		-	14 532 0	Q M (1 453 HA)				
LOTAREA		30 14 /	MIN 1		-	73.2 M	(אוו עשדיו) זייייב		and and the second s		
		30 M (M				70.2 IVI			Matter Architectural Stud 120 Wellington Road London, Ontario, Né		
LOT AREA		SUM (M	IN) for or	terial road		271./ M	-		p: 519.60		
LOT AREA LOT FRONTAGE LOT DEPTH		6 M (M	IN.) for pri	mary colle	ector	6.8 M			www.matte		
LOT AREA LOT FRONTAGE LOT DEPTH FRONT SETBACK		6 M (M	IN.)			182.8 M	for BUILDING 'A'		Project Title:		
LOT AREA LOT FRONTAGE LOT DEPTH FRONT SETBACK REAR YARD SETBA	CK .					3.5 M for	BUILDING 'A'		1470 - 1474 HIGHBURY AVE RESIDENT		
LOT AREA LOT FRONTAGE LOT DEPTH FRONT SETBACK REAR YARD SETBA	ск 	California	IN.			3.5 M for	BUILDING 'C'		DEVELOPMENT		
LOT AREA LOT FRONTAGE LOT DEPTH FRONT SETBACK REAR YARD SETBA INTERIOR SIDE YAR	ск Э	6 M (M				30% (MAX.) 25.5 %					
LOT AREA LOT FRONTAGE LOT DEPTH FRONT SETBACK REAR YARD SETBA INTERIOR SIDE YAR LOT COVERAGE	D	6 M (M 30% (M	IAX.)			25.5 %	_		1470-1474 Highbury Ave		
LOT AREA LOT FRONTAGE LOT DEPTH FRONT SETBACK REAR YARD SETBA INTERIOR SIDE YAR LOT COVERAGE BUILDING HEIGHT	ck D	6 M (M 30% (M 12 M (N	IAX.) MAX.)			25.5 % 74 M			1470-1474 Highbury Ave. Lond Sheet Name:		
LOT AREA LOT FRONTAGE LOT DEPTH FRONT SETBACK REAR YARD SETBA INTERIOR SIDE YAR LOT COVERAGE BUILDING HEIGHT LANDSCAPED OP	CK D N SPACE	6 M (M 30% (M 12 M (N 25% (M	IAX.) ΛΑΧ.) IIN.)			25.5 % 74 M 38.7 %			1470-1474 Highbury Ave. Lond Sheet Name: SITE PLAN, SITE DATA O B C. MATRIX		

Sheet No: SP100

Appendix C – Borehole Logs

BOREHOLE LOG

BH1/MW

Sheet 1 of 1

Copia Developments

PROJECT Proposed Development

DATUM Geodetic

PROJECT NO. KCH-00260285-A0

LO	CATION	1470-1474 Highbury Avenue, London, ON	1	DAT	ΈS	6: B	oring	Ju	ne 17, 2	2020				_	N	/ate	er	Le	/el				
	E		S				SAM	PLES		мс				S	HE	AR	s.	TRE	ENG	тн			
₽	Ē		R	W				R	N			P	Fi ene	ela etro	om	ane ete	e le ∘r	est	(#≕: To	sens rvar	SITI\ IE	nty)	
P	A Ţ	STRATA	Ī	Ľ		ĩ	NU	С О	VALUE				1			10	0			2	200	kPa	ı
Ĥ	0 N	DESCRIPTION	P	L		P	B	Ŭ		ŘŤ		A	tte	rb	erg	Li	mit	ts a	nd I	Nois	stur	e	
	N		Δ	Ğ		E	R	R Y								W _F	- V 	v ` →—	w∟				
(m bgs)	(~ m) 246.0							(mm)	(blows)	(%)	•) SI	PT 1(N`)	Va	lue 20)	א (ג :	Dyna 3 <u>0</u>	amio	: Co 40	one	
-0 -	245.9	GRANULAR - 100 mm	<u>, , , , , , , , , , , , , , , , , , , </u>									Ц			4						П	Т	
-	-243.7	TOPSOIL - 200 mm									\vdash		+						++		+		+ -
		trace gravel, trace organics, loose to compact,	\bigotimes		77																\square		
-1		moist	\bigotimes			SS	S1	200	16				+		•								
			\bigotimes		~~										_								
			\bigotimes		$\langle \rangle$	ss	S2	300	8														HĪ
-2			\bigotimes		\mathbb{Z}				•												+		
	243.5		\bigotimes		77																		
-	243.3	SAND AND GRAVEL - brown, trace silt,				SS	S3	350	21		-		+		_				+		+	+	
-3		CLAYEY SILT TILL - grey, some sand, trace	1919		~~																		
Ŭ		gravel, very stiff to hard, moist				ss	S4	150	25		\vdash		+	_	_				++		+	+	
-													П								#	Ħ	Π-
											\vdash		╢	-	-				++		╈	+	Η
-4						SS	S5	350	38											¢	1		
-		- trace clav near 4.4 m bos									\vdash	$\left \right $	+					+	++		╂╂	++	+ -
	241.1	adob olay hour 4.4 m bgo	H.			ss	S6	400	50*														
5		SAND AND GRAVEL - grey, trace silt, dense,	0.00		4						\vdash		+	-					++		╈	+	
		wet	0.000								\square		\square						\square		Н		
			0.000																				
-6			0000																+		+		
	220.4		0.0.0			ss	S7	300	47														
-	239.4	End of Borehole at 6.6 m bgs.	2		ľ																		
-7																							
-																							-
_8																							
Ŭ																							
-																							-
<u> </u>																							
							0.4.1.4																
NOT	TES						SAM	PLE L S Aug	⊑GEND jer Sam	ple 🛛	SS	s s	spli	t S	ро	on			ST	She	lby	Tub	е
1) B	orehole i	nterpretation requires assistance by EXP before u	se by	others	s.			Rock C	ore (eg.	BQ, N	Q, (etc	.)					۵	VN	Van	e S	am	ole
В К	orehole L CH-0026	Logs must be read in conjunction with EXP Report 0285-A0.					GS		Gravity	С	Co	nso	olid	ati	on								
2) b 3) N	2) bgs denotes below ground surface. 3) No significant methane gas concentration was detected upon completion of						H Hydrometer CD Consolidated Drained Triaxial																
d	drilling. 1) * denotes N = 50 blows per 125 mm split spoon sampler penetration						γ Unit Weight UU Unconsolidated Undrained Triaxial																
(⁻			Guall	<i>.</i>			R La	eia Pe ab Peri	meabilit	πy U0 y D9	5 D	ire	oni ct \$	ine She	ed (ear	or	npi	res	sion				
							WAT	ER LE	VELS														
							<u> </u>	ppare	nt	🗶 Me	eas	ure	ed			Ā		Art	esia	n (s	ee	Note	es)

BOREHOLE LOG

BH2/MW-A

Sheet 1 of 1

Copia Developments

PROJECT Proposed Development

DATUM <u>Geodetic</u>

PROJECT NO. KCH-00260285-A0

LO	LOCATION 1470-1474 Highbury Avenue, London, ON DATES						Boring	j <u>Ju</u>	ne 17, 2	2020	Water Level						
	E		S				SAN	IPLES		мс	SHEAR STRENGTH						
₽	Ē			WE				R	N		S Field Vane Test (#=Sensitivity) ▲ Penetrometer ■ Torvane						
P	Â	STRATA	Î	Ł		ĩ	NU	Č	VALUE		100 _ 200 kPa						
Ĥ		DESCRIPTION	P			P	B	Ĕ		ŘŤ	Atterberg Limits and Moisture						
(m bas)	(m)		þ	Ğ		-	Ē	R Y									
(5g3)	246.0		 '					(mm)	(blows)	(%)	• SPT N Value × Dynamic Cone 10 20 30 40						
-0-	245.7	TOPSOIL - 250 mm	<u>7/1/</u> 7/														
-		SAND - brown, trace silt, trace gravel, loose, moist															
					7												
-1						SS	S1	150	6			_					
-	244.6	SAND AND GRAVEL - brown, trace silt.	0.00	Ŧ													
		compact, moist	0.0.0			ss	S2	300	20								
-2			0.0.0			1					[+ + + + + + + + + + + + + + + + + + +	_					
	243.6	- becoming wet near 2.1 m bgs	000														
-		CLAYEY SILT TILL - grey, some sand, trace gravel very stiff to hard moist	19th			SS	53	350	30		[+ + + + + + + + + + + + + + + + + + +						
-3						-						_					
						ss	S4	450	34								
-			e de la			1					[+ + + + + + + + + + + + + + + + + + +						
4																	
7																	
-			1														
						ss	S5	300	28		Ⅰ · · · · · · · · · · · · · · · · · · ·						
-5			of 1			1											
-																	
			AT L														
-6			40		77	-					[+ + + + + + + + + + + + + + + + + + +	_					
				·-		ss	S6	400	40		••••••••••••••••••••••••••••••••••••••						
			34														
-7	239.0											_					
		occasional clayey layering, dense, wet	0.00														
-			0.00			-					[+ + + + + + + + + + + + + + + + + + +	-					
-8			0.00	目		ss	S7	400	31								
Ũ			0.000			1											
	237.5	End of Borebole at 8.5 m bos	0 0	¦∴⊟.													
						1											
-9																	
							SVI					—					
NO	TES							AS Au	ger Sam	ple 🛛	SS Split Spoon ST Shelby Tube						
1) B	orehole i	nterpretation requires assistance by EXP before	use by	othe	rs.		ᆘᄪ	≺ock C ⊏p ⊤r	ore (eg. כדפ	BQ, N	IQ, etc.) III VN Vane Sample	t					
B K	CH-0026	Logs must be read in conjunction with EXP Repo i0285-A0.	rt				GS	pecific	Gravity	С	Consolidation						
2) b 3) N	gs denote lo sianific	es below ground surface. ant methane gas concentration was detected up	on com	pletio	on c	of	H Hydrometer CD Consolidated Drained Triaxial										
ď	rilling.	g					γ Unit Weight UU Unconsolidated Undrained Triaxial										
							P Fi K Li	S Direct Shear									
							WAT	ERLE	EVELS								
1							- /	Appare	ent	I M	leasured 🛛 🔺 Artesian (see Notes))					

BOREHOLE LOG

BH2/MW-B

Sheet 1 of 1

CLIENT	Copia	Develo	pments
--------	-------	--------	--------

PROJECT _Proposed Development

PROJECT NO. <u>KCH-00260285-A0</u> DATUM <u>Geodetic</u>

LOCATION 1470-1474 Highbury Avenue, London, ON DATES: Bo							Boring June 17, 2020 Water Level				
E Ş						SAM	PLES		мс	SHEAR STRENGTH	
P	Ĕ		R R	W			RE	N	O O Į Ņ	■ S Field Vane Test (#=Sensitivity) ▲ Penetrometer ■ Torvane	
P	A T	STRATA	Â	Ľ	î	N	C C	VALUE	ΤĖ UN	, 100 , 200 kPa	
н	Ó N	DESCRIPTION	P	L	PE	BE	E E R		R T E	Atterberg Limits and Moisture	
(m bgs)	(~ m)		Ā	G		R	Ŷ			● SPT N Value × Dynamic Cone	
-0 -	245.9		1. 1. j. j.				(mm)	(blows)	(%)		
	245.7	SAND - brown, trace silt, trace gravel, loose.	<u> </u>								
-		moist									
-1											
	244.6		0 0								
-		SAND AND GRAVEL - brown, trace silt, compact, moist	0.00							$\left[+ + + + + + + + + + + + + + + + + + +$	
-2			0.00								
	243.5	- becoming wet near 2.1 m bgs	0000								
-		CLAYEY SILT TILL - grey, some sand, trace gravel, very stiff to hard, moist	194								
-3_	242.9	End of Porcholo at 2.0 m bac								╞┵┵┵┵┵┵┵┵┵┵┙┙┙┙	
		End of Borenole at 3.0 m bys.									
-4										-	
-											
-5										-	
-										-	
-6										-	
-										-	
7											
-7										_	
-										-	
8										_	
Ũ											
-										-	
-9										_	
			•			SAM		EGEND			
NO1	TES oreholo in	nterpretation requires assistance by EVD before	eo hu	othere			NS Aug Rock C	ore (eg.	pie ⊠ BQ, N	Q, etc.)	
B		Logs must be read in conjunction with EXP Report	se by	ouners	•	OTH	ER TE	STS Gravity	С	Consolidation	
2) b	gs denote	es below ground surface.	n com	nletion	of	HH	ydrom	eter	CI	D Consolidated Drained Triaxial	
d	rilling.	ant methane gas concentration was detected upo	II COIII	PIEUOI	1 01		nit We	ight		J Unconsolidated Undrained Triaxial	
						KLa	ab Peri	meabilit	ιγ U0 γ D0	S Direct Shear	
						WAT	ER LE	VELS nt	¥ Me	easured	

BOREHOLE LOG

BH3/MW-A

Sheet 1 of 1

Copia Developments

PROJECT Proposed Development

____ PROJECT NO. <u>KCH-00260285-A0</u> ____ DATUM <u>Geodetic</u>

LO	LOCATION 1470-1474 Highbury Avenue, London, ON DATES: F							3oring <u>June 17, 2020</u>					Water Level											
	E				Τ		SAMPLE			мс			_	5	SHE	EA	RS	STF	۲ <u>ع</u>	IGI	гн			Τ
Ē	Ē		R	W				R	N	O O Į Ņ		P S P	en	ielo etr	v t on	an net	e T er	es	t(# ■]	≔S ſor	ens van	itiv e	ity)	
Ē	Ă	STRATA	Î	Ē	1	т	N	Ē	VALUE				-		-	10)0			-	2	00	kPa	
Ĥ.	0 1	DESCRIPTION		Ļ		P	Ň	ĬĔ		Ř			\tte	ərb	erę	g L	imi	its	an	d N	lois	ture	ə	11
	N		L L	Ğ		E	E R	R Y								W	<u>'P</u>	w o	_w	<u>'</u> L				
(m bgs)	(~m) 246.1		Т					(mm)	(blows)	(%)	•	S	PT	' N 0	Va	lue 2	€ 0	×	Dy 30	/na	mic	: Co 40	ne	
-0-	245.9	TOPSOIL - 200 mm	<u> </u>						(()		Ц	Ţ	Ť	Ц	T	Ť	Ц	Ť	Ţ	╨	Ť	Ц	
_		SAND - brown, trace silt, trace gravel, loose,									\vdash				++		-		₩	++	+	+	+	ΗJ
											Ħ							Ħ	Ħ	#	#	Ħ	Ħ	ЦI
-1						SS	S1	200	4		╟	┥┤				+	+	┢┼╴	++	++	++	╈	╈	┝┨╼┥
L					~~						\square						_	H	\square	\square	+	\square	\square	
				÷		ss	S2	300	9				•											
-2	243.9				4				-		╟						+		₩	++	$+\!\!+$	₩	╟	┝┥┥
		SAND AND GRAVEL - brown, trace silt,	0.00								Ħ							Ħ	⋕	#	#	#		
-			0.000			SS	S3	75	50*		╟						+	+	┼┼	++	+	╂╋	╟	+
-3			0.0.0.0								Ħ							Ħ	⋕	$\downarrow \downarrow$	#	#	Ħ	
			0000			ss	S4	0	50**		\vdash				+				++	++	+	+	+	¦∳
-			0.0.0								\square				\square		Ŧ	\square	\square	\square	+	\square	\square	
	242.0		000																	\pm				
4		CLAYEY SILT TILL - grey, some sand, trace	14								\vdash						+		₩	++	+	╀	╀	┦╿
-		gravel, hard, moist	1		~~															╈		╈		┨┦
						SS	S5	300	46		\vdash						+	╟	₩	++	+	╫	┼┿	┥┦
-5			20		22										Ħ			Ħ	⋕	\ddagger	#	⋕	Ħ	
-											\vdash		-				+	⊢	╂	++	+	+	+	H
		- becoming very moist with trace clay near 5.6									\square						\mp	\square	\square	\square	\mp	\prod	\square	
-6			25								\vdash				\square						\pm	\pm		H -
						SS	S6	75	50*		\vdash				$\left \right $		+		₩	++	+	╀	╟	 •]
			gt 1								Ħ							Ħ	丗	#	#	Ħ	Ħ	
-7	239.0	SAND AND GRAVEL - grey trace silt very			•						⊢						+		╈	॑┤┤	+	╈	+	┝┥┥
		dense, wet	0.0.0														Ŧ	Ħ	\square	\square	\mp	\mp	#	
Γ			0.0.0.] 目.														$\left \right $	++	++	++	++	+	H
-8			000	18	2	SS	57	200	50^		\vdash				H		+			++	+	+	╀	┦┦┦
	237 5		0.0.0	目	•						Ħ							Ħ		#	#	Ħ	Ħ	
	201.0	End of Borehole at 8.1 m bgs.	0.0								╎	1 1			11							11		
-9																								
F	L		<u> </u>	·			SAM	PLE L	EGEND)	1													
NO	TES							AS Aug Rock C	ger Sam	ple ⊠ BQ N	ടാറ	S S etr	Spl	it S	ро	on		m	S	ΤS	3hel √an	by e S	Tub amr	e ole
1) B	orehole i lorehole l	nterpretation requires assistance by EXP before u logs must be read in conjunction with EXP Report	ise by t	other	s.		OTH	ER TE	STS	. <u></u> , N	- - , '	50	,					-	v		. arr	2.00	~Þ	
	CH-0026	0285-A0.					GS НН	pecific vdrom	Gravity	C		ns Cor	olio	dati lida	ion ate	d Г)ra	ine	r be	[ria	ixial			l
3)	lo signific	ant methane gas concentration was detected upo	n com	pletic	n of	:	S Si	eve A	nalysis	C	ŪČ	or	iso	lida	ate	dl	Jnc	Irai	ne	d T	riax	ial	-1	ľ
4)*	denotes	N = 50 blows per 100 mm split spoon sampler per	netratio	on.			γ Unit Weight UU Unconsolidated Undrained Tria P Field Permeability UC Unconfined Compression						axia	al	l									
^^	uenotes	שטוס שס – או טוטws per איז די mm split spoon sampler pen	erratio	11.			K La	ab Per	meabilit	y D	S D)ire	ect	Sh	ea	r								l
			- Apparent I Measured I Artesian (se						ee l	√ot∈	es)													

BOREHOLE LOG

BH3/MW-B

Sheet 1 of 1

Copia	Develo	pments
-------	--------	--------

PROJECT Proposed Development

PROJECT NO. <u>KCH-00260285-A0</u> DATUM <u>Geodetic</u>

LO	CATION	1470-1474 Highbury Avenue, London, Ol	N	DAT	ES:	Boring	j <u>Ju</u>	ne 17, 2	2020	Water Level
	Ę		s			SAN	IPLES		мс	SHEAR STRENGTH
₽	Ē		Ř	¥			R	N	ÖŎ N	S Field Vane Test (#=Sensitivity) ▲ Penetrometer ■ Torvane
P	Ă T	STRATA	Î	Ē	Τ	N	Ē	VALUE		100 200 kPa
Ĥ	0 0	DESCRIPTION	P	ן ג	P	B	Ĕ		ŘŤ	Atterberg Limits and Moisture
(m bac)	N ()		Ļ	Ğ	E	Ē	R			
(in bys)	⊷™) 246.1		'				(mm)	(blows)	(%)	● SPT N Value × Dynamic Cone 10 20 30 40
_0 _	245.9	TOPSOIL - 200 mm	<u>x' '/</u> <u>x</u>							
-		SAND - brown, trace slit, trace gravel, loose, moist								
-1										
-										
-2	243.9	SAND AND GRAVEL - brown, trace silt.	0.00							
-		occasional cobbles, very dense, wet	0.0.0	計目:						
2			0.0.0							
-3			000	目						
-	242.4		000							
_1		End of Borehole at 3.7 m bgs.								
-4										
-										-
5										_
-										
-6										-
-7										-
_										
-8										-
-										.
-9										-
						CAN				
NO	TES						AS Aug	eGENL ger Sam	ple 🛛	SS Split Spoon ST Shelby Tube
1) B	orehole i	nterpretation requires assistance by EXP before u	ise by	others			≺ock C IFR TF	ore (eg STS	. BQ, N	IQ, etc.) 🔟 VN Vane Sample
	CH-0026	ogs must be read in conjunction with EXP Repor 0285-A0.	ι			GS	pecific	Gravity	C C	Consolidation
2) b 3) N	o signific	es pelow ground surface. ant methane gas concentration was detected upo	n com	pletior	n of	S S	ieve A	eter nalysis	C	U Consolidated Undrained Triaxial
d	niling.					7 U P Fi	nit We ield Pe	eight ermeabil	UI ity U	U Unconsolidated Undrained Triaxial C Unconfined Compression
						K La	ab Per	meabilit	y D	S Direct Shear
							∟	evels ent	▼ M	easured Ā Artesian (see Notes)

BOREHOLE LOG

BH101

200 kPa

40

•

66

Sheet 1 of 1

1985780 Ontario Inc. CLIENT PROJECT NO. LON-21003692-A0 PROJECT Proposed Apartment Buildings DATUM Geodetic LOCATION 1470/1474 Highbury Ave N, London, ON DATES: Boring March 17, 2021 Water Level SHEAR STRENGTH SAMPLES STRATA CONTENT MOUSTURE S Field Vane Test (#=Sensitivity) WELL DEPTH **KECO>ER** ▲ Penetrometer ■ Torvane Ν NUMBER VALUE **STRATA** 100 T Y P E Atterberg Limits and Moisture DESCRIPTION **Ö** N L OG PLQ W_P W W_L θ SPT N Value (~m) × Dynamic Cone 1 bg (%) 245.6 (mm) (blows) 10 20 30 -0 245.4 TOPSOIL - 200 mm 0 -SAND AND GRAVEL - brown, trace to some 0.0.0 silt, occasional cobbles, dense, damp to wet -1 00 0.0 0 243.9 ss S1 300 47 8 6 SILT TILL - brown, some clay, some sand to 2 sandy, trace gravel, dense, damp to moist - becoming grey near 2.4 m bgs -3 - dilatant layering near 3.1 m bgs SS S2 450 45 11 -4 becoming clayey near 4.0 m bgs SS S3 400 45 9 -5 240.0 SAND - grey, fine to medium grained, trace -6 silt, very dense, wet 239.2 60 ss S4 400 13 SAND AND GRAVEL - grey, trace to some 00 silt, frequent cobbles, very dense, wet -7 0000 🛛 ss S5 300 66 10 -8 -9 ss S6 300 50 7 10 SS S7 300 50' 8 233.6 50* SS **S**8 Ω - possible boulder near 12.0 m bgs 12 End of Borehole at 12.0 m bgs. Auger Refusal. -13 14 15 16 SAMPLE LEGEND AS Auger Sample D SS Split Spoon ST Shelby Tube NOTES Rock Čore (eg. BQ, NQ, etc.) VN Vane Sample 1) Borehole Log interpretation requires assistance by EXP before use by others and must be read in conjunction with EXP Report LON-21003692-A0. OTHER TESTS 2) bgs denotes below ground surface.
 3) Borehole open to 5.5 m bgs and water measured near 1.2 m bgs upon G Specific Gravity C Consolidation CD Consolidated Drained Triaxial H Hydrometer completion of drilling. S Sieve Analysis CU Consolidated Undrained Triaxial 4) No significant methane gas concentration was detected upon completion of **γ** Unit Weight P Field Permeability UU Unconsolidated Undrained Triaxial drilling. UC Unconfined Compression K Lab Permeability DS Direct Shear WATER LEVELS

- Apparent

Measured

Ā

Artesian (see Notes)

BOREHOLE LOG

BH102

Sheet 1 of 1

DATUM Geodetic

1985780 Ontario Inc. PROJECT Proposed Apartment Buildings

LOCATION 1470/1474 Highbury Ave N, London, ON DA						S: B	oring	Ma	nrch 16,	2021	Water Level			
E					ş		SAM	PLES	LES		SHEAR STRENGTH			
P	Ē		T R	W				R	N	0 O L N	 S Field Vane Test (#=Sensitivity) Penetrometer Torvane Torvane 			
P	A Ţ	STRATA	Ī	Ł		Ţ	NU	Č	VALUE	ΤĖ	100200 kPa			
Ĥ	о N	DESCRIPTION	P	۲ Q		P E	M B E	V E R		ŘŤ E	Atterberg Limits and Moisture W _P W W _I			
m bgs)	(~ m)		P	G			R	Y			● SPT N Value × Dvnamic Cone			
-0 -	246.0		A 1					(mm)	(blows)	(%)	10 20 30 40			
-	245.7	TOPSOIL - 300 mm									-			
-1	245.1	trace gravel, brick fragments, moist												
-		SAND AND GRAVEL - brown, trace silt, occasional cobbles, very dense, damp	0.0.0		77	~~			50	•				
-2			0.00			SS	S1	300	58	2	₩			
-	243.5										-			
-3		trace gravel, dense to very dense, damp to	1919											
-		moist				SS	S2	400	47	9				
-4														
-			e V		~~						-			
-5						SS	S3	450	50	10	→ →→ ● →→→→→→→→→→→●→			
-	240.4		ď X											
-6		SAND AND GRAVEL - grey, trace silt, frequent cobbles compact to very dense wet	0.00											
-		······································	0.00			SS	S4	200	25	11				
-7			0.0.0											
-			000								-			
-8			0.0.0			SS	S5	100	50*	9	····			
-			0000								_			
-9			0000											
-			0.00			SS	S6	150	50*	6	• • • • • • • • • • • • • • • • • • •			
-10			0.0.0											
-			000											
-11			0.00			SS	S7	125	50*	11	••••••••••••••••••••••••••••••••••••••			
-			0000											
-12			0.000											
			0.0.0.											
-13			000											
	232.6	CLAVEY SILT TILL grow troop cond troop												
-14		gravel, hard, moist	1919											
-15														
-	230.3		e V			ss	S8	300	69	4	0			
-16	200.0	End of Borehole at 15.7 m bgs.	.1424. 152								-			
							SVV4				L			
NOT	TES						SAIVI X A	S Aug	ger Sam	ple 🛛	SS Split Spoon ST Shelby Tube			
1) B	<u> </u>	og interpretation requires assistance by EXP befo	ore use	by of	the	rs	F F	Rock Č	ore (eg.	BQ, N	Q, etc.) 🔲 VN Vane Sample			
ัล วงณ	nd must	pe read in conjunction with EXP Report LON-2100	3692-	A0.			OTH	ER TE	STS	C	Consolidation			
3) B	orehole c	ppen to 7.6 m bgs and water measured near 6.1 m	ı bgs ı	ipon			HH	ydrom	eter	č	D Consolidated Drained Triaxial			
с 4) N	ompletior o sianific	n of drilling. ant methane gas concentration was detected upo	n com	pletior	ו of	f	S Si	eve A	nalysis iaht	Cl	J Consolidated Undrained Triaxial			
ď	rilling.	J					P Fi	eld Pe	rmeabili	ty UC	C Unconfined Compression			
							K Lab Permeability DS Direct Shear							
			WATER LEVELS – Apparent											

DEPTH

1 bg

-0

-1

-2

-3

-4

-5

-6

-7

-8

-9

10

·12

13

14

15

16

BOREHOLE LOG

BH103

Sheet 1 of 1

1985780 Ontario Inc.

CLIENT PROJECT NO. LON-21003692-A0 PROJECT Proposed Apartment Buildings DATUM Geodetic LOCATION 1470/1474 Highbury Ave N, London, ON DATES: Boring March 12, 2021 Water Level SHEAR STRENGTH SAMPLES STRATA CONTENT MOUSTURE S Field Vane Test (#=Sensitivity) WELL **KECO>ER** ▲ Penetrometer ■ Torvane Ν NUMBER VALUE **STRATA** 100 200 kPa T Y P E Atterberg Limits and Moisture DESCRIPTION **Ö** N L OG PLQ W_P W W_L θ SPT N Value (~m) × Dynamic Cone (%) 245.8 (mm) (blows) 10 20 30 40 245.5 TOPSOIL - 250 mm 0 e SAND AND GRAVEL - brown, trace silt, 0.0.0 occasional cobbles, compact to dense, damp 0:00 to wet 0000 ∕∕∕ss∣ 30 S1 250 4 243.3 0 SANDY SILT - grey, dilatant, dense, wet **x** Φ SS S2 300 45 18 241.7 97 SILT TILL - grey, some clay, some sand, trace gravel, compact to very dense, damp to SS S3 300 26 15 moist S4 87 ss 400 8 87 238.7 000 SAND AND GRAVEL - grey, trace silt, silt layering, frequent cobbles, very dense, wet ss 0.00 S5 50 0 0.0.0.0 0 00 0 0 1 236.5 55 S6 125 50 8 End of Borehole at 9.3 m bgs. Auger Refusal. SAMPLE LEGEND AS Auger Sample D SS Split Spoon ST Shelby Tube NOTES Rock Čore (eg. BQ, NQ, etc.) VN Vane Sample 1) Borehole Log interpretation requires assistance by EXP before use by others and must be read in conjunction with EXP Report LON-21003692-A0. OTHER TESTS 2) bgs denotes below ground surface.
 3) Borehole open to 4.3 m bgs and water measured near 2.4 m bgs upon G Specific Gravity C Consolidation CD Consolidated Drained Triaxial H Hydrometer completion of drilling. S Sieve Analysis CU Consolidated Undrained Triaxial 4) No significant methane gas concentration was detected upon completion of **γ** Unit Weight P Field Permeability UU Unconsolidated Undrained Triaxial drilling. UC Unconfined Compression **DS** Direct Shear

K Lab Permeability WATER LEVELS - Apparent

Measured

Ā

Artesian (see Notes)

BOREHOLE LOG

BH104/MW

PROJECT NO. LON-21003692-A0

Sheet 1 of 1

1985780 Ontario Inc.

PROJECT Proposed Apartment Buildings DATUM Geodetic LOCATION 1470/1474 Highbury Ave N, London, ON DATES: Boring March 12, 2021 Water Level May 4/21 SHEAR STRENGTH SAMPLES STRATA CONTENT MOUSTURE S Field Vane Test (#=Sensitivity) WELL DEPTH Torvane **KECO>ER** Penetrometer Ν NUMBER VALUE **STRATA** 100 200 kPa T Y P E Atterberg Limits and Moisture DESCRIPTION **Ö** N L OG PLQ w_P w w_L е SPT N Value (~m) × Dynamic Cone ۱bg (%) 246.0 (mm) (blows) 10 20 30 40 -0 245.8 TOPSOIL - 200 mm 0 SAND AND GRAVEL - brown, trace silt, 0 occasional cobbles, dense, damp to moist -1 0 Ò 0 SS 300 30 S1 3 Ò 2 0 '·*O* - becoming wet near 2.5 m bgs O. -3 ò 20 o SS S2 33 5 150 0 \mathcal{O} 242.0 -4 R SILT TILL - grey, some clay, some sand, trace gravel, dense to very dense, damp to SS S3 250 33 22 ¢ moist -5 -6 S4 50* SS 150 8 238.9 -7 SAND - grey, fine to medium grained, trace silt, trace to some gravel, dense to very dense, SS S5 400 30 ┼┼┼╋┼┼┼┤ wet -8 - occasional cobbles and sand and gravel layers -9 ø SS S6 450 50 16 10 SS S7 450 65 15 65 234.4 0.00 SAND AND GRAVEL - grey, trace silt, 12 frequent cobbles, very dense, wet 0.00 SS S8 50 0 13 ss S9 0 50 00 0 0. -15 230.8 - possible boulder at 15.2 m bgs 1 End of Borehole at 15.2 m bgs. Auger Refusal. 16 SAMPLE LEGEND AS Auger Sample D SS Split Spoon ST Shelby Tube NOTES Rock Čore (eg. BQ, NQ, etc.) VN Vane Sample 1) Borehole Log interpretation requires assistance by EXP before use by others and must be read in conjunction with EXP Report LON-21003692-A0. OTHER TESTS 2) bgs denotes below ground surface.
3) No significant methane gas concentration was detected upon completion of G Specific Gravity C Consolidation CD Consolidated Drained Triaxial H Hydrometer drilling. S Sieve Analysis CU Consolidated Undrained Triaxial **γ** Unit Weight P Field Permeability UU Unconsolidated Undrained Triaxial UC Unconfined Compression K Lab Permeability DS Direct Shear WATER LEVELS - Apparent Measured Ā Artesian (see Notes) Appendix D – Grain Size Analyses

MECHANICAL GRAIN SIZE ANALYSIS

Appendix E – MECP Water Well Record Summary

Water Well	Records	Records Wednesday, 2 September, 2020							
						10:18	:52		
TOWNSHIP CON LOT	UTM	DATE CNTR	CASING DIA	WATER	PUMP TEST	WELL USE	SCREEN	WELL	FORMATION
LONDON CITY	17 482174 4764423 W	1977/07 5466	6	FR 0019	8/10/6/8:0	DO		4108280 ()	BLCK LOAM PORS 0001 BRWN GRVL DRY PORS 0012 GREY GRVL CLAY 0018 GREY GRVL PORS 0020
LONDON CITY	17 482094 4764303 W	1975/07 4741	8	FR 0010	10/15/5/2:0	DO		4107405 ()	FILL CLAY 0006 GRVL 0024
LONDON CITY	17 482714 4763563 W	1977/06 3009	5	FR 0087	54/57/6/1:30	DO		4108108 ()	GREY GRVL 0004 GREY CLAY SAND STNS 0083 GREY FSND 0086 GREY GRVL SAND 0087
LONDON CITY	17 482434 4763748 W	1987/09 5413	5	FR 0084	73/73/10/20:0	DO		4111051 (10000)	GREY GRVL STNS DRY 0012 GREY CLAY BLDR HARD 0022 GREY CLAY STNS HARD 0047 YLLW SAND STNS DRY 0072 GREY GRVL SAND SILT 0084
LONDON CITY	17 482393 4763827 W	2007/05 6607	2.31	FR 0016			0012 20	7047112 (Z70538) A051239	BRWN SAND STNS FILL 0013 BRWN SAND SILT FILL 0028 BRWN SAND SLTY TILL 0031
LONDON CITY	17 482328 4763824 W	2012/11 7238				MO	0010 10	7192993 (Z160021) A139749	BRWN FILL 0010 GREY TILL SILT HARD 0020
LONDON CITY (LONDON CON 03 008	17 482714 4763653 W	1958/06 1708	4 4	SU 0148	77/105/8/4:0	ST DO		4101580 ()	MSND 0012 HPAN STNS 0140 SHLE 0145 LMSN 0149
LONDON CITY (LONDON CON 03 009	17 482014 4764033 W	1948/12 2801	8					4101590 ()	LOAM 0003 GRVL 0005 GRVL STNS CLAY 0008 CLAY STNS 0025 CLAY GRVL 0044 BLUE CLAY 0048 BRWN CLAY 0051 CLAY GRVL 0054 BLUE CLAY 0056 BRWN CLAY SHLE 0059 ROCK 0060
LONDON CITY (LONDON CON 03 009	17 481614 4763923 W	1948/12 2801	8					4101589 ()	LOAM 0001 CLAY GRVL STNS 0025 CLAY GRVL 0030 HPAN 0040 CLAY GRVL 0046 HPAN 0054 CLAY GRVL 0060 BRWN CLAY 0065 CLAY GRVL 0076 BLCK SHLE CLAY 0082 ROCK 0089
LONDON CITY (LONDON CON 03 009	17 481784 4763903 W	1948/12 2801	8		3/10/45/:			4101588 ()	LOAM 0001 GRVL 0008 GRVL CLAY 0015 MSND GRVL 0017 GRVL CLAY 0024 MSND GRVL 0027 GRVL MSND 0036 GRVL 0037 CLAY GRVL 0053 BLCK SHLE CLAY 0058 ROCK 0060
LONDON CITY (LONDON CON 03 009	17 481684 4763753 W	1948/11 2801	8					4101587 ()	LOAM 0002 MSND 0004 BLDR GRVL 0010 CLAY GRVL 0026 MSND GRVL 0028 CLAY GRVL 0058 ROCK 0060
LONDON CITY (LONDON CON 03 009	17 481554 4764053 W	1948/11 2801	8					4101586 ()	GRVL 0005 GRVL CLAY 0007 MSND GRVL 0012 CLAY GRVL 0025 CLAY MSND 0048 CLAY GRVL 0057 HPAN 0060 GRVL CLAY 0062 CLAY 0075 BLCK SHLE CLAY 0078 CLAY GRVL 0080 BLUE CLAY 0088 CLAY GRVL 0095 ROCK 0096
LONDON CITY (LONDON CON 03 009	17 482174 4763683 W	1949/03 2801	8		4/15/85/:			4101592 ()	MUCK STNS 0008 CLAY STNS GRVL 0020 MSND CLAY 0027 MSND GRVL 0039 GRVL CLAY 0048 BRWN CLAY 0059 QSND 0061 ROCK 0062
LONDON CITY (LONDON CON 03 009	17 481924 4764213 W	1930/05 3347	3					4101594 ()	LOAM 0002 GRVL 0008 CLAY MSND GRVL 0040 GRVL 0043 CLAY GRVL 0056 SHLE 0076

TOWNSHIP CON LOT	UTM	DATE CNTR	CASING DIA	WATER	PUMP TEST	WELL USE	SCREEN	WELL	FORMATION
LONDON CITY (LONDON CON 03 009	17 482084 4763733 W	1949/02 2801	8					4101591 ()	LOAM 0005 GRVL CLAY BLDR 0017 GRVL 0021 GRVL CLAY MSND 0035 MSND 0037 MSND GRVL CLAY 0044 CLAY GRVL 0049 BLUE CLAY 0059 ROCK 0060
LONDON CITY (LONDON CON 04 009	17 481754 4764683 W	1948/09 2801	8	UK	8/12/1/:	NU		4101750 () A	LOAM 0003 CLAY GRVL 0043 GRVL 0059 GRVL CLAY 0060 BLUE CLAY 0071 BRWN CLAY 0073 BLCK SHLE 0074 ROCK 0075
LONDON CITY (LONDON CON 04 009	17 481834 4764313 W	1948/09 2801	2	UK 0018	7///:	NU		4101751 ()	LOAM 0002 CLAY GRVL 0016 GRVL CLAY 0026 CLAY GRVL 0030 HPAN 0035 CLAY 0074 BLCK SHLE 0075 ROCK 0076
LONDON TOWNSHIP	17 482073 4764303 W	2018/09 3366	8		11///:			7323350 (Z297535)	
LONDON TOWNSHIP	17 481887 4764849 W	2019/03 7190	2 4	0027	27///:	MO	0040 10	7331887 (Z305984) A264255	BRWN GRVL SAND 0025 ROCK HARD 0035 BRWN SILT CLAY TILL 0040
LONDON TOWNSHIP	17 481850 4764809 W	2019/03 7190	2 4	0007	7///:	MO	0010 5	7331888 (Z305985) A264256	BRWN GRVL SAND DNSE 0010
LONDON TOWNSHIP	17 481997 4764383 W	2017/04 7320	2			TH MO	0015 10	7288380 (Z256434) A225253	BRWN FILL 0008 BRWN CLAY TILL 0015
LONDON TOWNSHIP	17 481982 4764369 W	2017/04 7320	2			TH MO	0015	7288378 (Z256432) A225255	BRWN FILL 0007 BRWN CLAY TILL 0015
LONDON TOWNSHIP	17 482220 4763792 W	2012/08 7238	16			MN OT		7185399 (Z149596) A	
LONDON TOWNSHIP	17 482281 4763806 W	2012/11 7238				MO	0015 10	7192989 (Z160024) A139745	BRWN FILL LOOS PCKD 0025
LONDON TOWNSHIP	17 482379 4763850 W	2012/11 7238				MO	0008 10	7192990 (Z160025) A139751	BRWN FILL 0010 GREY TILL SILT HARD 0018
LONDON TOWNSHIP	17 482433 4763879 W	2012/11 7238				MO	0010 10	7192991 (Z160026) A139746	BRWN FILL 0006 BRWN SILT CLAY DNSE 0015 GREY TILL SILT HARD 0020
LONDON TOWNSHIP	17 482424 4763944 W	2012/11 7238				МО	0010 10	7192992 (Z160019) A139748	BRWN FILL LOOS 0006 BRWN TILL SILT HARD 0020
LONDON TOWNSHIP	17 481972 4764374 W	2017/04 7320	2			ТН МО	0015 10	7288379 (Z256433) A225254	BRWN FILL 0007 BRWN CLAY TILL 0015
LONDON TOWNSHIP	17 482307 4763852 W	2012/11 7238				МО	0015 10	7192994 (Z160022) A139752	BRWN FILL LOOS 0015 BRWN TILL SILT HARD 0025

TOWNSHIP CON LOT	UTM	DATE CNTR	CASING DIA	WATER	PUMP TEST	WELL USE	SCREEN	WELL	FORMATION
LONDON TOWNSHIP	17 482354 4763906 W	2012/11 7238				МО	0015 10	7192995 (Z160023) A139750	BRWN FILL LOOS 0020 GREY SAND GRVL CMTD 0025
LONDON TOWNSHIP	17 481949 4764453 W	2017/04 7320	2	UT		TH MO	0030 10	7287064 (Z256461) A219973	BRWN FILL 0008 BRWN TILL CLAY 0020 BRWN TILL SILT 0024 BRWN SAND GRVL 0030
LONDON TOWNSHIP	17 481970 4764378 W	2017/04 7320	2			TH MO	0015 10	7288377 (Z256559) A225256	BRWN FILL 0008 BRWN CLAY TILL 0015
LONDON TOWNSHIP CON 03 007	17 482694 4764513 W	1949/11 2801	8					4101572 ()	LOAM 0002 MSND CLAY STNS 0005 CLAY GRVL MSND 0107 HPAN 0111 GRVL 0117 GRVL CLAY 0120 GRVL 0123 GRVL CLAY 0125 GRVL 0126 BRWN CLAY GRVL SHLE 0129 BLUE CLAY 0136 BLCK SHLE 0139 ROCK 0140
LONDON TOWNSHIP CON 03 008	17 482424 4764223 W	1961/07 4711	5	FR 0091	56/80/4/3:0	DO		4101581 ()	LOAM 0001 MSND 0050 CLAY 0070 HPAN 0072 GRVL 0084 MSND 0089 GRVL 0091
LONDON TOWNSHIP CON 03 008	17 482414 4764083 W	1965/08 4711	6	FR 0073	54/58/4/4:0	DO		4101585 ()	GRVL 0064 CSND 0073 GRVL 0074
LONDON TOWNSHIP CON 03 008	17 482604 4763853 W	1966/06 2607	36 30	FR 0006	3/10/1/2:0	DO		4101584 ()	GRVL 0005 BLUE CLAY 0006 QSND 0007 BLUE CLAY STNS 0012
LONDON TOWNSHIP CON 03 008	17 482634 4763783 W	1961/09 2607	36	FR 0010	3/8/2/5:0	DO		4101582 ()	MSND 0004 BLUE CLAY STNS 0010
LONDON TOWNSHIP CON 03 008	17 482374 4764343 W	1955/06 4711	6	FR 0081	30/60/4/5:0	DO		4101577 ()	LOAM 0002 BRWN CLAY 0025 BLUE CLAY 0030 MSND 0050 BRWN CLAY 0070 HPAN 0081 GRVL 0082
LONDON TOWNSHIP CON 03 008	17 482274 4764243 W	1949/02 2801	8		2/12/45/:			4101575 ()	LOAM 0002 MSND 0006 GRVL BLDR 0023 GRVL 0027 GRVL CLAY 0032 GRVL 0043 CLAY GRVL 0045 BLUE CLAY 0051 BRWN CLAY ROCK 0059
LONDON TOWNSHIP CON 03 008	17 482404 4764083 W	1949/01 2801	8					4101574 ()	LOAM 0002 MSND 0005 GRVL 0007 GRVL CLAY STNS 0015 CLAY STNS 0030 GRVL CLAY 0031 GRVL 0033 GRVL CLAY 0039 CLAY GRVL 0059 BRWN CLAY SHLE 0061 ROCK 0062
LONDON TOWNSHIP CON 03 008	17 482354 4764363 W	1963/11 4711	5	FR 0063	50/59/4/5:0	DO		4101583 ()	GRVL STNS 0063
LONDON TOWNSHIP CON 03 008	17 482594 4763903 W	1979/05 5466	6	FR 0063	55/66/9/3:0	DO	0063 3	4109166 ()	BLCK LOAM PORS 0001 BRWN SAND GRVL PCKD 0006 BRWN CLAY STNS DNSE 0008 GREY GRVL SAND CLAY 0016 GREY CLAY GRVL 0023 GREY GRVL SAND CLAY 0032 GREY CLAY DNSE 0059 GREY GRVL SAND CLAY 0062 GREY GRVL SAND PORS 0070
LONDON TOWNSHIP CON 03 008	17 482389 4764315 W	2011/07 7090	6.61	FR 0072 FR 0078	44/51/15/1:30	DO	0072 8	7175693 (Z136356) A109033	BLCK LOAM 0002 BRWN FILL 0006 BRWN CLAY 0011 GREY CLAY STNS 0071 BLUE GRVL 0080
LONDON TOWNSHIP CON 03 008	17 482388 4764288 W	2004/04 3366	5.11 4.11	FR 0070	51/69/10/6:	DO	0071 10	4115607 (Z05933) A002624	BRWN CLAY 0006 BRWN GRVL 0012 GREY CLAY HPAN GRVL 0060 GREY GRVL 0062 GREY CLAY 0070 GREY CSND CGVL 0082

TOWNSHIP CON LOT	UTM	DATE CNTR	CASING DIA	WATER	PUMP TEST	WELL USE	SCREEN	WELL	FORMATION
LONDON TOWNSHIP CON 03 008	17 482490 4763794 L	2003/08 4876	6 5	FR 0078	55/56/12/1:30	DO	0087 3	4115397 (265074)	BRWN CLAY STNS DNSE 0022 GREY CLAY STNS DNSE 0053 GREY GRVL CLAY HARD 0078 GREY GRVL SAND LOOS 0090
LONDON TOWNSHIP CON 03 008	17 482180 4764376 W	2002/10 4876	6 5	FR 0074	48/49/18/2:0	DO	0074 4	4114985 (242090)	BRWN CLAY STNS 0012 BRWN GRVL CLAY SOFT 0023 GREY CLAY STNS 0049 GREY GRVL CLAY SOFT 0074 GREY GRVL SAND LOOS 0082 GREY CLAY GRVL HARD 0083
LONDON TOWNSHIP CON 03 008	17 482584 4763873 W	1987/12 2604	5 5	FR 0080	57/75/10/1:30	DO	0077 3	4111087 (04425)	BRWN LOAM 0002 BRWN CLAY STNS 0009 GREY GRVL 0013 GREY CLAY STNS 0075 GREY FGVL 0077 GREY GRVL CLAY LYRD 0088
LONDON TOWNSHIP CON 03 008	17 482094 4764323 W	1985/07 4741	5	FR 0019	4/7/12/10:0	DO		4110359 ()	LOAM 0002 GRVL 0014 CLAY 0019 GRVL 0026
LONDON TOWNSHIP CON 03 008	17 482174 4764343 W	1985/03 1708	5	FR 0018	2/9/7/8:0	DO		4110225 ()	LOAM DKCL 0002 BRWN CLAY GRVL STNS 0009 GREY CLAY GRVL 0018 GRVL 0019
LONDON TOWNSHIP CON 03 008	17 482454 4763963 W	1980/09 1708	5	FR 0054	49/52/15/16:0	DO	00718	4109363 ()	FILL 0003 BRWN CLAY GRVL 0013 BRWN CLAY GRVL STNS 0034 GREY CLAY GRVL STNS 0054 GRVL SAND CMTD 0080 GREY CLAY GRVL 0081
LONDON TOWNSHIP CON 03 008	17 482404 4764243 W	1973/05 3009	5	FR 0084	59/60/5/2:0	DO		4106266 ()	BRWN CLAY SAND 0014 BRWN FSND 0024 GREY CSND CLAY 0075 GREY FSND CLAY 0083 GRVL SAND 0084
LONDON TOWNSHIP CON 03 008	17 482114 4764363 W	1984/07 4741	5	FR 0002 FR 0040	-15/20/10/10:0	DO	0035 3	4110092 ()	GRVL SNDY 0008 CLAY 0022 GRVL CLAY 0040
LONDON TOWNSHIP CON 04 007	17 482204 4764843 W	2006/08 4876						4116741 (Z53072) A	
LONDON TOWNSHIP CON 04 007	17 482569 4764594 W	2019/04 7190	4 2	UT 0012	12///:	MT	0012 5	7333281 (Z309556) A266850	BRWN LOAM LOOS SOFT 0000 BRWN FILL SAND GRVL 0008 BRWN SAND GRVL LOOS 0017
LONDON TOWNSHIP CON 04 008	17 481954 4764423 W	1959/09 4711	5	FR 0040	25/25/6/3:0	DO		4101742 ()	MSND GRVL STNS 0040
LONDON TOWNSHIP CON 04 008	17 481905 4764594 W	2013/09 3366	5		16///:			7209355 (Z176692) A141245 A	
LONDON TOWNSHIP CON 04 008	17 481914 4764858 W	2003/12 2801				NU		4115567 (Z02147) A	
LONDON TOWNSHIP CON 04 008	17 482114 4764573 W	1963/11 4741	77	FR 0045	16/17/15/4:0	DO		4101745 ()	GRVL 0020 CLAY 0045 GRVL 0046
LONDON TOWNSHIP CON 04 008	17 481964 4764403 W	1960/07 4711	5	FR 0043	25/25/6/3:0	DO		4101744 ()	STNS GRVL 0018 CLAY 0030 GRVL 0043
LONDON TOWNSHIP CON 04 008	17 481893 4764647 W	1988/12 1708	8 5	FR 0050	14/18/15/3:0	DO		4111555 (28073)	LOAM 0001 BRWN GRVL DRTY DRY 0011 GREY CLAY GRVL 0026 GRVL SAND CMTD 0048 GRVL SAND 0050
LONDON TOWNSHIP CON 04 008	17 481923 4764632 W	1988/10 1708		FR 0052	14/15/17/1:0	DO		4111554 (28071)	LOAM 0001 BRWN GRVL DRY 0012 GREY CLAY GRVL 0025 GREY CLAY GRVL SAND 0046 GREY GRVL SAND 0052

TOWNSHIP CON LOT	UTM	DATE CNTR	CASING DIA	WATER	PUMP TEST	WELL USE	SCREEN	WELL	FORMATION
LONDON TOWNSHIP CON 04 008	17 481994 4764383 W	1959/09 4711	5	FR 0036	25/26/6/3:0	DO		4101743 ()	MSND GRVL STNS 0036
LONDON TOWNSHIP CON 04 008	17 481954 4764803 W	1951/05 2801	16 16	UK	19/41/833/32:0	MN	0048 10	4101731 ()	LOAM 0002 GRVL 0007 CLAY STNS 0016 CLAY GRVL 0026 GRVL BLDR 0032 GRVL 0058 GRVL CLAY 0059
LONDON TOWNSHIP CON 04 008	17 481934 4764493 W	1959/08 4711	5	FR 0025	10/15/6/3:0	DO		4101741 ()	LOAM 0002 STNS 0007 HPAN 0012 HPAN 0025 GRVL 0026
LONDON TOWNSHIP CON 04 008	17 482174 4764463 W	1971/03 3009	4					4105358 () A	GREY GRVL 0018 BLUE CLAY 0054
LONDON TOWNSHIP CON 04 008	17 481864 4764703 W	1959/05 1728	7	FR 0028	18/20/40/6:0	СО	0024 5	4101740 ()	GRVL 0010 CLAY GRVL 0028 GRVL 0029
LONDON TOWNSHIP CON 04 008	17 482214 4764463 W	1971/03 3009	4 4	SU 0100	0/22/10/3:0	DO		4105356 ()	BRWN GRVL 0022 BLUE CLAY 0026 GREY FSND CLAY 0060 BLUE CLAY STNS FSND 0075 BLCK LMSN 0095 BRWN LMSN 0102
LONDON TOWNSHIP CON 04 008	17 481914 4764743 W	1948/08 2801	8					4101724 () A	LOAM 0001 GRVL 0006 CLAY GRVL 0026 CLAY 0035 GRVL 0054 ROCK 0055
LONDON TOWNSHIP CON 04 008	17 482354 4764633 W	1949/04 2801	8					4101726 () A	LOAM 0002 GRVL CLAY 0008 CLAY 0017 CLAY MSND 0020 CLAY 0025 CLAY GRVL MSND 0060 BLUE CLAY 0066 BRWN CLAY 0071 CLAY GRVL 0083 ROCK 0085
LONDON TOWNSHIP CON 04 008	17 482244 4764803 W	1950/10 2801	8					4101728 ()	LOAM 0001 GRVL STNS 0011 CLAY GRVL 0027 GRVL 0033 GRVL CLAY 0040 CLAY GRVL 0043 GRVL 0046 GRVL CLAY 0054 GRVL 0059 MSND GRVL 0061 GRVL CLAY 0064 MSND GRVL CLAY 0068 GRVL CLAY 0082 GRVL 0083 ROCK 0084
LONDON TOWNSHIP CON 04 008	17 482034 4764833 W	1951/01 2801	8					4101730 ()	LOAM 0001 GRVL STNS 0005 GRVL CLAY 0010 CLAY GRVL 0032 GRVL 0045 GRVL BLDR 0047 GRVL BLDR CLAY 0050 GRVL CLAY 0061 CLAY 0065
LONDON TOWNSHIP CON 04 009	17 481714 4764743 W	1978/05 2607	36 30	FR 0008	8/8/30/3:0	IR		4108479 ()	CGVL 0010 BLUE CLAY 0014
WEST NISSOURI TOWNSH CON 03 008	17 482414 4764228 W	1986/05 4871	6 5	FR 0088	56/63/20/8:0	DO	0088 3	4110710 (NA)	BRWN CLAY STNS GRVL 0022 BLUE CLAY STNS 0030 BRWN SAND CLAY STNS 0065 BLUE CLAY STNS 0088 GREY SAND 0091 BLUE CLAY STNS 0096

TOWNSHIP CON LOT UTM

DATE CNTR CASING DIA

PUMP TEST

WATER

WELL USE SCREEN WELL

FORMATION

Notes:

UTM: @TM in Zone, Easting, Northing and Datum is NAD83; L: UTM estimated from Centroid of Lot; W: UTM not from Lot Centroid DATE CNTR: Date Work Completedand Well Contractor Licence Number

CASING DIA: @asing diameter in inches

WATER: Init of Depth in Fee. See Table 4 for Meaning of Code

1. Core Material and Descriptive terms

PUMP TEST: Static Water Level in Feet / Water Level After Pumping in Feet / Bump Test Rate in GPM / Pump Test Duration in Hour : Minutes WELL USE: See Table 3 for Meaning of Code SCREEN: Screen Depth and Length in feet WELL: WEL (AUDIT #) Well Tag . I Abandonment; P: Partial Data Entry Only FORMATION: See Table 1 and 2 for Meaning of Code

1.	Core Material and	Desc	riptive terms						2. Co	re Color	3. Well Use	
Co	e Description	Code	Description	Code Description	Code	Description	Code	Description	Code	Description	Code Description	Code Description
BLI	R BOULDERS	FCRD	FRACTURED	IRFM IRON FORMATION	PORS	POROUS	SOFT	SOFT	GREY	GREY	ST Livestock	TH Test Hole
BSI	T BASALT	FGRD	FINE-GRAINED	LIMY LIMY	PRDG	PREVIOUSLY DUG	SPST	SOAPSTONE	BLUE	BLUE	IR Irrigation	DE Dewatering
CGI	D COARSE-GRAINED	FGVL	FINE GRAVEL	LMSN LIMESTONE	PRDR	PREV. DRILLED	STKY	STICKY	GREN	GREEN	IN Industrial	MO Monitoring
CG	L COARSE GRAVEL	FILL	FILL	LOAM TOPSOIL	QRTZ	QUARTZITED	STNS	STONES	YLLW	YELLOW	CO Commercial	MT Monitoring Tes
CHI	T CHERT	FLDS	FELDSPAR	LOOS LOOSE	QSND	QUICKSAND	STNY	STONEY	BRWN	BROWN	MN Municipall	
CLI	Y CLAY	FLNT	FLINT	LTCL LIGHT-COLOURED	QTZ	QUARTZ	THIK	THICK	RED	RED	PS Publicu	(an)
CLI	CLEAN	FOSS	FOSILIFEROUS	LYRD LAYERED	ROCK	ROCK	THIN	THIN	BLCK	BLACK	AC COOLING AND A	er CLL.
CLY	Y CLAYEY	FSND	FINE SAND	MARL MARL	SAND	SAND	TILL	TILL	0001	PROP-OVE1	No Not used	
CM	D CEMENTED	GNIS	GNEISS	MGRD MEDIUM-GRAINED	SHLE	SHALE	UNKN	UNKNOWN TYPE				
COL	G CONGLOMERATE	GRNT	GRANITE	MGVL MEDIUM GRAVEL	SHLY	SHALY	VERY	VERY				
CR	S CRYSTALLINE	GRSN	GREENSTONE	MRBL MARBLE	SHRP	SHARP	WBRG	WATER-BEARING	A 141	ator Dotail		
CSI	D COARSE SAND	GRVL	GRAVEL	MSND MEDIUM SAND	SHST	SCHIST	WDFR	WOOD FRAGMENTS	PP. 44	ater Detail		
DK	L DARK-COLOURED	GRWK	GREYWACKE	MUCK MUCK	SILT	SILT	WTHD	WEATHERED	Code	Description Cod	Description	
DLI	T DOLOMITE	GVLY	GRAVELLY	OBDN OVERBURDEN	SLTE	SLATE			FR	Fresh GS	Gas	
DN	E DENSE	GYPS	GYPSUM	PCKD PACKED	SLTY	SILTYD			SA	Salty IR	Iron	
DR	Y DIRTY	HARD	HARD	PEAT PEAT	SNDS	SANDSTONE			SU	Sulphurfi		
DR	DRY	HPAN	HARDPAN	PGVL PEA GRAVEL	SNDY	SANDYOAPSTONE			MIN	MineralD		

Page 6 of 6

TH Test Hole DE Dewatering MO Monitoring MT Monitoring TestHole

Appendix F – Well Survey Questionnaire Responses

EXP Services Inc. 15701 Robin's Hill Road London, ON N5V 0A5 Telephone: (519) 963-3000 Facsimile: (519) 963-1152

Reference: KCH-00260285-A0

September 10, 2020

To: Owner/Resident

Request for Information Local Survey of Potable Wells

EXP Services Inc. has been retained to carry out a survey to obtain local water well information from the properties in the area of Kilally Road, between Highbury Avenue North and Webster Street, and along Webster Street between Kilally Road and Jensen Road in London, Ontario.

The purpose of the well survey is to assess the locations of any shallow potable wells in the area, including those which may not be recorded in the Ministry of Environment, Conservation and Parks (MECP) Water Well Record Database. We respectfully ask that you provide us with any pertinent well information which will allow us to make a detailed survey of the wells in the area, for submission and review for future development in the area described above.

Attached is a questionnaire that we would like you to fill out, to the best of your knowledge and which can be faxed, mailed, or e-mailed to us, as soon as possible.

Your participation in this project is appreciated; however, if you prefer to not participate, we would still appreciate a response indicating that you have declined to provide the requested information. Should you have any questions or concerns regarding the above, please feel free to contact our office to speak with the undersigned.

Yours truly,

EXP Services Inc.

lassel

Heather Jaggard, M.Sc., P.Geo Hydrogeologist, Project Manager

*Please find attached Questionnaire to be completed by the owner/resident.

(please select the appropriate box)

□ Agree to Provide Well Information

I hereby disclose the following information to **EXP Services Inc**. regarding the well on the subject property (noted below) and in doing so, acknowledge that the monitoring results may be available to the public on request.

Name							
Address							
Phone							
Existing well	No wells present at the address noted above						
	Yes – please refer to requested details below						
Location of Well							
(Describe location, in reference to existing buildings or structures. If preferred, you can provide a sketch on the back of this page)							
Depth of Well	Date Drilled (estimate, if not known)						
Type of Well: (Dug/Bored or Drilled)	Static Water Level						
Do you have Municipal water?	 No Yes – if yes, is the well still being used? 						

Decline to Provide Well Information

I choose not to provide information regarding onsite well (s) to EXP Services Inc. at the following address:

Owner's Signature

Date

Please return to:

Heather Jaggard

EXP Services Inc. 15701 Robin's Hill Rd. London ON N5V 0A5 Fax: 519-963-1152

Agree to Provide Well Information

ereby disclose the following information to **EXP Services Inc**. regarding the well on bject property (noted below) and in doing so, acknowledge that the monitoring results no available to the public on request.

Name	The Kangaroo's pouch Day care
Address	1410 /1414 Kilally rd London on
Phone	
Existing well	 No wells present at the address noted above Yes – please refer to requested details below
Location of Well	
Describe location, in eference to existing uildings or structures. preferred, you can rovide a sketch on the ack of this page)	
epth of Well	Date Drilled (estimate, if not known)
vpe of Well: ug/Bored or Drilled)	Static Water Level
o you have unicipal water?	\Box No Ves – if yes, is the well still being used? NO

Decline to Provide Well Information

noose not to provide information regarding onsite well (s) to EXP Services Inc.

's Signature

eturn to:

(please select the appropriate box)

Agree to Provide Well Information

I hereby disclose the following information to **EXP Services Inc**. regarding the well on the subject property (noted below) and in doing so, acknowledge that the monitoring results may be available to the public on request.

		0117					
Name	AUDREY	Algehard L	lesa Grais				
Address	1417 WEBSTER 51						
Phone	519-4556012						
Existing well	Existing well INo wells present at the address noted above						
	Yes – please refer to requested details below						
Location of Well	WEST	SIDE OF	The house				
(Describe location, in reference to existing buildings or structures. If preferred, you can provide a sketch on the back of this page)	Hou	SE GARAGE JE 63TER ST					
Depth of Well	B2 ft.	Date Drilled (estimate, if not known)	1955				
Type of Well: (Dug/Bored or Drilled)	Drilled	Static Water Level	30ft.				
Do you have	No						
Municipal water?	□ Yes - if yes, is the	well still being used?					

Decline to Provide Well Information

I choose not to provide information regarding onsite well (s) to EXP Services Inc. at the following address: ______.

if Alesalhais

Please return to:

Heather Jaggard EXP Services Inc. 15701 Robin's Hill Rd. London ON N5V 0A5

pt 11/2020

Fax: 519-963-1152

(please select the appropriate box)

Agree to Provide Well Information

I hereby disclose the following information to EXP Services Inc. regarding the well on the subject property (noted below) and in doing so, acknowledge that the monitoring results may be available to the public on request.

Name	Rick & So	oda For	ster				
Address	1419 10 Debater St						
Phone	519-455-1666						
Existing well	□ No wells present at th	e address noted above					
	Yes – please refer to requested details below						
Location of Well	In the Front ward on the						
(Describe location, in reference to existing buildings or structures. If preferred, you can provide a sketch on the back of this page)	north sid	e.					
Depth of Well	70-90 feet	Date Drilled (estimate, if not known)	2003				
Type of Well: (Dug/Bored or Drilled)	Drilled	Static Water Level	?				
Do you have	No						
Municipal water?	☐ Yes – if yes, is the we	Il still being used?					

Decline to Provide Well Information

I choose not to provide information regarding onsite well (s) to EXP Services Inc. at the following address:

Owner's Signature

Please return to:

Heather Jaggard EXP Services Inc. 15701 Robin's Hill Rd. London ON N5V 0A5

Date

Fax: 519-963-1152

-- ----

Well Survey Release Form

September 10, 2020 KCH-00260285-A0

WELL SURVEY QUESTIONNAIRE

(please select the appropriate box)

Agree to Provide Well Information 17

SEP 1 5 2020

I hereby disclose the following information to EXP Services Inc. regarding the well on the subject property (noted below) and in doing so, acknowledge that the monitoring results may be available to the public on request.

Name	DL	21				
Address	Philong	Tham				
Phone	1421 We	eacter st	La	ndon on		
Existing well	□ No wells present	at the address note	ed above	·····		
	Ves - please ref	er to requested deta	ils below			
Location of Well			*** <u></u>			
(Describe location, in reference to existing buildings or structures. If preferred, you can provide a sketch on the back of this page)	Back Co house i	near th	e d	of the ecc.		
Depth of Well	goft	Date Drilled (estimate, if not	known)	2002		
Type of Well: (Dug/Bored or Drilled)	Drilled	Static Water	Level			
Do you have	I⊈∕No					
Municipal water?	□ Yes – if yes, is the well still being used?					

Decline to Provide Well Information

I choose not to provide information regarding onsite well (s) to EXP Services Inc. at the following address:

Owner

Please return to:

ot 14 Date

Heather Jaggard EXP Services Inc. 15701 Robin's Hill Rd. London ON N5V 0A5

Fax: 519-963-1152

(please select the appropriate box)

□ Agree to Provide Well Information

I hereby disclose the following information to **EXP Services Inc**. regarding the well on the subject property (noted below) and in doing so, acknowledge that the monitoring results may be available to the public on request.

Name	1415A C	ARDNECT					
Address	IULA VILA	IIV Rd					
Phone	510-452-	xHII					
Existing well	□ No wells present at the address noted above						
	Yes – please refer to requested details below						
Location of Well (Describe location, in reference to existing buildings or structures. If preferred, you can provide a sketch on the back of this page)	KILALE	Y well is m flower bed - state	NA P				
Depth of Well	Non't know	Date Drilled (estimate, if not known)	~ 1984				
Type of Well: (Dug/Bored or Drilled)	drilled	Static Water Level	unknown.				
Do you have Municipal water?	□ No 琢Yes – if yes, is the w	vell still being used? Yes	-used for water				
		-	oufside.				

Decline to Provide Well Information

I choose not to provide information regarding onsite well (s) to **EXP Services Inc**. at the following address: ______

Owner's Signature

OLTOBER

Date

Please return to:

Fax: 519-963-1152

E-mail: Heather.Jaggard@exp.com (please include WELL SURVEY in subject line).

Heather Jaggard EXP Services Inc. 15701 Robin's Hill Rd. London ON N5V 0A5

(please select the appropriate box)

Agree to Provide Well Information

I hereby disclose the following information to **EXP Services Inc**. regarding the well on the subject property (noted below) and in doing so, acknowledge that the monitoring results may be available to the public on request.

Name	CHRES	SCOTT	
Address	1461 6	ILALLY R	OAP, LONDA
Phone	519 451	2690	
Existing well	□ No wells present at the	e address noted above	
	Services – please refer to r	requested details below	
(Describe location, in reference to existing buildings or structures. If preferred, you can provide a sketch on the back of this page)	East side ubout 30	of mark b m from how	uilding 150
Depth of Well	Not known	Date Drilled (estimate, if not known)	1960 5
Type of Well: (Dug/Bored or Drilled)	Not known	Static Water Level	Kot known.
Do you have Municipal water?	□ No √Yes – if yes, is the we	Il still being used?	

Decline to Provide Well Information

I choose not to provide information regarding onsite well (s) to EXP Services Inc. at the following address:

Owner's Signature

Please return to:

Heather Jaggard EXP Services Inc. 15701 Robin's Hill Rd. London ON N5V 0A5

20 Date

Fax: 519-963-1152

SEP 2 9 2020

(please select the appropriate box)

Agree to Provide Well Information

I hereby disclose the following information to **EXP Services Inc**. regarding the well on the subject property (noted below) and in doing so, acknowledge that the monitoring results may be available to the public on request.

Name	Wayne M.	orley	
Address	1461 We	bster St	
Phone	519-453-	2646	
Existing well	No wells present at the	e address noted above	
	Yes - please refer to r	equested details below	
Location of Well			
(Describe location, in reference to existing buildings or structures. If preferred, you can provide a sketch on the back of this page)			
Depth of Well	96 Feet	Date Drilled (estimate, if not known)	1986
Type of Well: (Dug/Bored or Drilled)	Drilled	Static Water Level	
Do you have	Ø No		
Municipal water?	□ Yes – if yes, is the wel	I still being used?	<u></u>

Decline to Provide Well Information

I choose not to provide information regarding onsite well (s) to **EXP Services Inc**. at the following address:

Warne Monday **Owner's Signature**

<u>Sept 17/2020.</u> Date

Please return to:

Heather Jaggard	Fax : 519-963-1152
EXP Services Inc.	
15701 Robin's Hill Rd.	E-mail: Heather.Jaggard@exp.com
London ON	(please include WELL SURVEY in subject line).
N5V 0A5	

1

(please select the appropriate box)

Agree to Provide Well Information

I hereby disclose the following information to EXP Services Inc. regarding the well on the subject property (noted below) and in doing so, acknowledge that the monitoring results may be available to the public on request.

Name	Kevin Allen					
Address	1467 Web:	ster st				
Phone						
Existing well	No wells present a	t the address noted above to requested details below				
Location of Well (Describe location, in reference to existing buildings or structures, If preferred, you can provide a sketch on the back of this page)	. Front yard . 30ft From f . 6ft From d	mont door rive way				
Depth of Well	82 Feet	Date Drilled (estimate, if not known)	April 11,2004			
Type of Well: (Dug/Bored or Drilled)	DRILLED Static Water Level SWL 51 Foet					
Do you have Municipal water?	TNo	well still being used?	-			

Decline to Provide Well Information

I choose not to provide information regarding onsite well (s) to EXP Services Inc. at the following address:

Owner's Signature

Please return to:

Heather Jaggard EXP Services Inc. 15701 Robin's Hill Rd. London ON N5V 0AS

Sept 14/2020

Date

Fax: 519-963-1152

(please select the appropriate box)

□ Agree to Provide Well Information

I hereby disclose the following information to EXP Services Inc. regarding the well on the subject property (noted below) and in doing so, acknowledge that the monitoring results may be available to the public on request.

Name	SHAWN HAR	RINGTON							
Address	1471 WEBSTE	1471 WEBSTER ST.							
Phone	519-455-7968	\$							
Existing well	 No wells present at the address noted above Yes – please refer to requested details below 								
Location of Well (Describe location, in reference to existing buildings or structures. If preferred, you can provide a sketch on the back of this page)	FRONT YARD, 105 feet off	IN FRONT OF road.	GAFAGE.						
Depth of Well	80 feet	Date Drilled (estimate, if not known)	2011 07 PP						
Type of Well: (Dug/Bored or Drilled)	Drilled	Static Water Level	Not known at						
Do you have Municipal water?	☑ No □ Yes – if yes, is the we	Should be doc Il still being used?	work performed						

Decline to Provide Well Information

I choose not to provide information regarding onsite well (s) to EXP Services Inc. at the following address:

2020 508 17

Owner's Signature

Please return to:

Date

Fax: 519-963-1152

E-mail: Heather.Jaggard@exp.com (please include WELL SURVEY in subject line).

Heather Jaggard EXP Services Inc. 15701 Robin's Hill Rd. London ON N5V 0A5

Draft sa

∧ €

EONSTRUCTION

TO EAST

WELL SURVEY QUESTIONNAIRE

(please select the appropriate box)

Agree to Provide Well Information

I hereby disclose the following information to **EXP Services Inc**. regarding the well on the subject property (noted below) and in doing so, acknowledge that the monitoring results may be available to the public on request.

				the second se
Name	JAMIS MENER			
Address	1479 WOBSER S	T, London	, ON NSV	3R1
Phone	226 663 1030	, ,		
Existing well	No wells present at the addre	ss noted above		and the second second
and the second second	I des - please refer to request	ed details below		
Location of Well	NORA NORTHWIST COA	Non OR PR	L. P-RTY	
(Describe location, in reference to existing buildings or structures. If preferred, you can provide a sketch on the back of this page)	- AT BOTTON OF SLOPE WAL	s/ 5, 5~5 AB	ove rom	~~~~ ~~~ L~~
Depth of Well	29 ^c Date I (estimation	Drilled te, if not known)	1960	
ype of Well: Dug/Bored or Drilled)	Dug Static	Water Level	6'	HISTORICE
				AT LAD

Decline to Provide Well Information

Owner's Signature

Please return to:

Heather Jaggard EXP Services Inc. 15701 Robin's Hill Rd. London ON N5V 0A5

Oct 2/20

Fax: 519-963-1152

(please select the appropriate box)

Agree to Provide Well Information

I hereby disclose the following information to **EXP Services Inc.** regarding the well on the subject property (noted below) and in doing so, acknowledge that the monitoring results may be available to the public on request.

Name	JAMIE MEN	92	
Address	1479 2000 5702	57,	
Phone	226 663 10	30	
Existing well	□ No wells present at the	address noted above	
	Ves - please refer to re	equested details below	
Location of Well (Describe location, in reference to existing buildings or structures. If preferred, you can provide a sketch on the back of this page)	JUST NORON OF APPROXIMATION 261 336 Ft SOUTH O WEST OF WE	HOUSE TH DING I F KUNLLY RY. A BSTER ST.	A 227757
Depth of Well	76'	Date Drilled (estimate, if not known)	5000 2019
Type of Well: (Dug/Bored or Drilled)	DRILLED	Static Water Level	50.7'
Do you have	12 No		
Nunicipal water?	□ Yes - if yes, is the well	I still being used?	

Decline to Provide Well Information

I choose not to provide information regarding onsite well (s) to EXP Services Inc. at the following address:

Owner's Signature

0072/20

Date

Please return to:

Heather Jaggard EXP Services Inc. 15701 Robin's Hill Rd. London ON N5V 0A5

Fax: 519-963-1152

No. (Place Sticker and/or Print Bel Regulation 903 Ontario Water Resource Tag#: A 227757 Well Record Page to 1CNEIL Province Well Constructed by Well Owner Postal Code NISVBRIZZ6166BILDBD LUNDON ONT BSTER Address of Wall Location (Street Number/Name) LONDON NA City/Town/Village Staff D Ma X CITY OF LOND ON Municipal Plan and Sublot Number A Postal Code N Pr MIDDLESEX Ontario NAD 8 3 1 77 4B2 3 4 47 6 4 3 6 2 Overburden and Bedrock Materials/Abandonment Sealing Record (see instructions on the back of this for 4 > C 2B2232AMb58AAAIBD NISVBIRI Other 8 General Descript Most Common Material Lenn General Colour = New message TUPSOIL MARLSTREAK SOFT BIACK GLAY ERUNN DRY Folders SAND c GRAVEZ BROWN STONE CLAY 0 Inbox GREY SAND LATEPED, CEMENTED GRAVEL 0 Junk Email BLUE HARD GLAY Drafts D Sent Items Deleted Iter **Results of Well Yield Testing** Annular Space After test of well yield, water was Draw Down F Volume Placed (mint) Archive Recovery Type of Sealant Used (Material and Type) Depth Set at (m/ft) From To Clear and sand free Time Water Level Time Water Level (min) (m/ft) (m/ft) Other, specify Notes SOLIDS BUSTONITE If pumping discontinued, give reason: 507 Level GEZ/SAND SLURRY band 10.3 CLEAR 495 1 47 1 10 SILICA SAND PAIR concerts Pump intake set at (m/ft) 2 48' 2 48 Conversation 3 3 48 Pumping rate (Vmin / GPM) Well Use Duration of pumping Method of Construction 494 4 ebay 4 476 Commercial Domestic Not used Diamond Cable Tool Municipal Test Hole Dewatering
Monitoring Jetting 5 46 5 11 1 hrs + 15 min house stuff Driving Livestock Rotary (Reverse) Final water level end of pumping (m/ft) Cooling & Air Conditioning Digging Imigation 10 10 46 Boring 56'7 If flowing give rate (Umin / GPM) houses Other, specify Air percussion 15 15 506 Other, specify eep Status of Well NOT **Construction Record - Casing** 20 20 50 upgrape to 1 Set with gran Water Supply Recommended pump depth (m/ft) Open Hole OR Material (Galvanized, Fibreglass, Concrete, Plastic, Steel) Depth (m/ft) Wall Inside Diamete (cm/in) Replacement Well Thickness (cm/in) 73 25 50 25 To From Test Hole Recommended pump rate (Vmin / GPM) 8 GPM 7 30 30 Recharge Well 50 64 +2 TEEL L Dewatering Well 50 40 40 Observation and/or Well production (I/min / GPM) O TYP H Monitoring Hole 0 % GPM 50 50 50 Alteration Disinfected? (Construction) No 60 50 60 Tres Abandoned, Insufficient Supply **Construction Record - Screen** Map of Well Location Abandoned, Poor Please provide a map below following instructions on the back Depth (m/ft) Water Quality Material (Plastic, Galvanized, Steel) N Slot No. Abandoned, other, From To Highbury, Rd N specify n 76 TAINLESS 10 64 Other, specify Kilally Rd HEAVY Water Details Hole Diameter 336f+ Water found at Depth Kind of Water: Fresh Untested Depth (m/ft) Diamete From (cm/in)
 Image: Text of the system
 Gas
 Other, specify

 Water found at Depth
 Kind of Water:
 Fresh
 Untested
 10 SSF (m/ft) Gas Other, specify D Water found at Depth Kind of Water: Fresh Untested Well (m/ft) Gas Other, specify Well Contractor and Well Technician Information Well Contractor's Licence No. Webster St Business Name of Well Contractor Hayden Water Wells Co. Inc Business Address (Street Number/Name) 7090 Municipality Comments: 35339 Lucan Biddul Santsburg Line Postal Code Business E-mail Address " Well is approx 85 ft from Webster St Province 7 DN NOMZIJa info chayden water wells .c. Bus Telephone No. (inc. area code) Name of Well Technician (Last Name, First Name) Ministry Use Only Well owner's Date Package Delivered Audit No.Z31 nformation 88 package 201191000 1919/22/700517 Hayden Jay Well Technician's Licence No. Signature of Technician and/or Contractor Date Submitted delivered Date Work Completed VYes 20111910000 2019103 No 2506E (2018/12) Well Owner's Copy © Queen's Printer for Ontario, 2018

(please select the appropriate box)

Agree to Provide Well Information

I hereby disclose the following information to **EXP Services Inc**. regarding the well on the subject property (noted below) and in doing so, acknowledge that the monitoring results may be available to the public on request.

Name	Davi	d Gale	1
Address	1481.	Kilally Rd.	LONDON
Phone	519 4	53 1363	and the first state of the
Existing well	□ No wells present	at the address noted above r to requested details below	
Location of Well (Describe location, in reference to existing buildings or structures. If preferred, you can provide a sketch on the back of this page)	In Fron between house	nt of House Kilallij Ra	i and
Depth of Well	16'	Date Drilled (estimate, if not known)	1962
	n		.1.1.4
Type of Well: (Dug/Bored or Drilled)	Pug	Static Water Level	Not Sure

Decline to Provide Well Information

I choose not to provide information regarding onsite well (s) to EXP Services Inc. at the following address:

Owner's Signature

Please return to:

Heather Jaggard EXP Services Inc. 15701 Robin's Hill Rd. London ON N5V 0A5

2020 Date

Fax: 519-963-1152

Hagit Blumenthal

From:Heather JaggardSent:Friday, June 18, 2021 1:16 PMTo:Hagit BlumenthalSubject:FW: LOCAL SURVEY OF POTABLE WELLSAttachments:information request09102020.pdf; Highbury Ave Corp Ownership Plan (1).jpg

Heather Jaggard, M.Sc., P.Geo., QP

EXP | Hydrogeologist, Project Manager t : +1.226.616.0748 | m : +1.905.977.9030 | e : <u>heather.jaggard@exp.com</u>

<u>exp.com</u> | <u>legal disclaimer</u> keep it green, read from the screen

From: B. Giancola

bigiancola@rogers.com>
Sent: Thursday, September 10, 2020 8:14 PM
To: Heather Jaggard <Heather.Jaggard@exp.com>
Cc: Janet Brabender <accounting2@skyviewpoolandspa.com>
Subject: Fw: LOCAL SURVEY OF POTABLE WELLS

CAUTION: This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

Hello Heather.

There are no wells on our following properties:

1410 Kilally Rd
1414 Kilally Rd
1500 Highbury Ave
1504 Highbury Ave
1510 Highbury Ave
1516 Highbury Ave
1520 Highbury Ave

Please see map attached.

Have a good weekend.

Ben Giancola 519-902-6311 Cell ----- Forwarded Message -----From: Janet Brabender <<u>accounting2@skyviewpoolandspa.com</u>> To: Ben Giancola <<u>bgiancola@rogers.com</u>> Cc: Martina Pike <<u>accounting@skyviewpoolandspa.com</u>> Sent: Thursday, September 10, 2020, 04:44:06 p.m. EDT Subject: LOCAL SURVEY OF POTABLE WELLS

Good afternoon Ben

The attached was dropped in our mailbox today, just addressed to owner/resident. Thanks for taking care of this.

Janet

Appendix G – Water Levels and Hydrographs

KCH-00260285-A0 1470 Highbury Avenue North, London

Water Elevation Monitoring

							P1	P1	P2-S	P2-S	\$61
Well ID	BHTUNIAN	BHZA/IVIVV	BHZB/IVIVV	BH3A/IVIVV	BH3B/IVIVV	BH104/IVIVV	Inside	Outside	Inside	Outside	SGI
Ground Surface Elevation (masl)	245.98	245.99	245.94	246.05	246.05	246.05	243.49	243.49	244.19	244.19	243.32
Top of Pipe Elevation (masl)	246.82	246.70	246.85	246.82	246.93	246.79	244.81	244.81	245.38	245.38	244.32
Groundwater Elevation (masl)											
24-Jun-20	243.90	244.60	243.69	244.52	243.74	-	-	-	-	-	-
27-Jul-20	243.72	244.35	243.45	244.43	243.47	-	243.19	Dry	Dry	Dry	243.55
14-Aug-20	243.71	244.33	243.47	244.43	243.51	-	243.34	Dry	Dry	Dry	243.57
10-Sep-20	243.76	244.37	243.53	244.42	243.62	-	243.48	243.78	Dry	Dry	243.67
17-Oct-20	243.67	244.24	243.46	244.42	243.52	-	243.32	Dry	Dry	Dry	243.58
23-Nov-20	243.69	244.28	243.53	244.42	243.61	-	243.45	243.76	Dry	Dry	243.67
15-Dec-20	243.84	244.44	243.78	244.57	244.11	-	243.68	244.03	Dry	Dry	243.72
21-Jan-21	243.87	244.52	243.83	244.69	243.93	-	243.87	244.14	Dry	Dry	244.02
24-Feb-21	243.12	243.57	244.53	244.52	243.74	-	244.12	244.28	Dry	Dry	243.88
17-Mar-21	243.98	244.67	243.94	244.83	244.47	244.78	244.22	244.24	244.10	Dry	244.25
23-Apr-21	244.01	244.65	243.80	244.84	243.91	244.66	244.17	244.05	243.87	Dry	244.07
04-May-21	243.95	244.57	243.67	244.75	243.75	244.60	243.87	243.87	243.85	Dry	243.89
12-Jul-21	243.75	244.28	243.43	244.45	243.42	244.30	243.55	Dry	243.63	Dry	243.56

		ΒΗ2Δ/ΜΜ					P1	P2-S
Well ID	DITT/IVIV	BHZAJIVIV	BHZB/WW	BHSAJIVIV	BIISB/IVIV	B11104/10100	Inside	Inside
Groundwater Levels (m bgs)								
24-Jun-20	2.09	1.39	2.25	1.53	2.31	-	-	-
27-Jul-20	2.27	1.64	2.49	1.62	2.59	-	0.30	Dry
14-Aug-20	2.28	1.66	2.47	1.62	2.54	-	0.15	Dry
10-Sep-20	2.22	1.62	2.41	1.63	2.43	-	0.01	Dry
17-Oct-20	2.32	1.75	2.48	1.63	2.53	-	0.17	Dry
23-Nov-20	2.30	1.71	2.41	1.63	2.44	-	0.04	Dry
15-Dec-20	2.15	1.55	2.16	1.48	1.94	-	-0.19	Dry
21-Jan-21	2.12	1.47	2.11	1.36	2.12	-	-0.38	Dry
24-Feb-21	2.87	2.42	1.41	1.53	2.31	-	-0.63	Dry
17-Mar-21	2.01	1.32	2.00	1.22	1.58	1.27	-0.73	0.09
23-Apr-21	1.98	1.34	2.14	1.21	2.14	1.39	-0.68	0.32
04-May-21	2.04	1.42	2.27	1.30	2.30	1.45	-0.38	0.34
12-Jul-21	2.24	1.71	2.51	1.60	2.63	1.75	-0.06	0.56

Notes:

- indicates not measured

Appendix H – Single Well Response Test Data

Initial Water Level	1.63 m bgs
Maximum Drawdown	1.46 m
r (m) =	0.0254
L (m) =	1.52
R (m) =	0.1080
T _o (sec) =	72
K (m/s) =	7.8E-06

r = radius of well casing **R** = Radius of well screen or filter pack

Note: 1 - T_o is determined from plots where (H-h)/(H-Ho) = 0.37

Datum

+

dh

L = Length of the well screen (in Slug Test) or the length

of submerged portion of the well screen (in Rising Head)

 T_0 = time for water level to rise or fall to 37% of the initial change

3.26

L (m) = 0.99 R (m) = 0.1080 T_o (sec) = 17 K (m/s) = 4.2E-05

Note: 1 - T_o is determined from plots where (H-h)/(H-Ho) = 0.37

Datum

L = Length of the well screen (in Slug Test) or the length

of submerged portion of the well screen (in Rising Head)

 T_0 = time for water level to rise or fall to 37% of the initial change

1 - T_o is determined from plots where (H-h)/(H-Ho) = 0.37

Datum

L = Length of the well screen (in Slug Test) or the length

of submerged portion of the well screen (in Rising Head)

 T_0 = time for water level to rise or fall to 37% of the initial change

Appendix I – Water Quality Tables

Groundwater Quality Results 1470 Highbury Avenue North, London, ON Project No. KCH-00260285

CRITCRIA	ODWOS	UNITS	17-Oct-20	17-Mar-21	17-Oct-20	17-Mar-21				
CRITERIA	ODWQS		BH3/	MW-A	BH3/	MW-B				
Calculated Parameters	Calculated Parameters									
Anion Sum	-	me/L	6.56	6.92	8.26	7.82				
Bicarb. Alkalinity (calc. as CaCO3)	-	mg/L	220	260	320	290				
Calculated TDS	-	mg/L	350	370	440	420				
Carb. Alkalinity (calc. as CaCO3)	-	mg/L	2.2	3.4	2.3	2.2				
Cation Sum	-	me/L	6.66	7.07	8.41	7.97				
Hardness (CaCO3)	-	mg/L	260	290	350	350				
Ion Balance (% Difference)	-	%	0.76	1.08	0.91	0.96				
Langelier Index (@ 20C)	-	N/A	0.692	0.966	0.947	0.962				
Langelier Index (@ 4C)	-	N/A	0.443	0.717	0.699	0.714				
Saturation pH (@ 20C)	-	N/A	7.32	7.18	6.94	6.95				
Saturation pH (@ 4C)	-	N/A	7.57	7.43	7.19	7.19				
Inorganics	4	•			<u>.</u>	1				
Total Ammonia-N	-	mg/L	0.12	<0.050	0.068	<0.050				
Conductivity	-	umho/cm	630	680	760	760				
Dissolved Organic Carbon	-	mg/L	1.7	0.91	1.7	2.3				
Orthophosphate (P)	-	mg/L	<0.010	<0.010	<0.010	<0.010				
pH	-	pH	8.01	8.15	7.88	7.91				
Dissolved Sulphate (SO4)	-	mg/L	18	28	31	27				
Alkalinity (Total as CaCO3)	-	mg/L	230	260	320	290				
Dissolved Chloride (Cl-)	-	mg/L	59	41	44	42				
Nitrite (N)	1	mg/L	<0.010	<0.010	<0.010	0.011				
Nitrate (N)	10	mg/L	<0.10	<0.10	0.12	2.99				
Nitrate + Nitrite (N)	-	mg/L	<0.10	<0.10	0.12	3.01				
Metals	<u>I</u>	8/ -			•					
Dissolved Aluminum (Al)	<u> </u>	ug/I	6	<4 9	5.7	73				
Dissolved Antimony (Sb)	6	ug/1	<0.50	<0.50	<0.50	<0.50				
Dissolved Arsenic (As)	10	ug/L	<1.0	<1.0	<1.0	<1.0				
Dissolved Barium (Ba)	1000	ug/1	150	130	150	99				
Dissolved Bervllium (Be)	-	ug/1	<0.40	<0.40	<0.40	<0.40				
Dissolved Boron (B)	5000	ug/1	55	51	36	18				
Dissolved Cadmium (Cd)	5	ug/L	<0.090	<0.090	<0.090	<0.090				
Dissolved Calcium (Ca)	-	ug/L	58000	69000	100000	110000				
Dissolved Chromium (Cr)	50	ug/1	<5.0	<5.0	<5.0	<5.0				
Dissolved Cobalt (Co)	-	ug/L	<0.50	<0.50	0.55	<0.50				
Dissolved Copper (Cu)	-	ug/L	<0.90	11	17	2.5				
Dissolved Iron (Ee)	-	ug/L	<100	<100	<100	<100				
Dissolved Lead (Pb)	10	ug/1	<0.50	<0.50	<0.50	<0.50				
Dissolved Magnesium (Mg)	-	ug/L	28000	29000	21000	20000				
Dissolved Manganese (Mn)	-	ug/1	14	33	130	<2.0				
Dissolved Molybdenum (Mo)	-	ug/L	21	6.9	1.8	<0.50				
Dissolved Nickel (Ni)	-	ug/1	13	1	1.7	2.5				
Dissolved Phosphorus (P)	-	ug/L	<100	<100	<100	<100				
Dissolved Potassium (K)	-	ug/L	6300	4100	2800	1500				
Dissolved Selenium (Se)	50	ug/L	<2.0	<2.0	<2.0	<2.0				
Dissolved Silicon (Si)	-	ug/1	5900	6400	5800	4600				
Dissolved Silver (Ag)	-	ug/I	<0.090	<0.090	<0.090	<0.090				
Dissolved Sodium (Na)	-	ug/L	30000	26000	33000	20000				
Dissolved Strontium (Sr)	- I	110/1	360	340	410	310				
Dissolved Thallium (TI)	<u> </u>	ug/L	<0.050	<0.050	<0.050	<0.050				
Dissolved Titanium (Ti)		ug/L	<5.0	<5.0	<0.030	~5.0				
Dissolved Uranium (U)	20	ug/L	0.78	0.26	1 2	0.66				
Dissolved Vanadium (V)	-	11g/l	0.70	<0.50	1	<0.50				
Dissolved Zinc (Zn)	-	ug/I	<5.0	<5.0	<5.0	<5.0				
	1	∽6/∟	-5.0	-5.0	-5.0	-5.0				

TABLE NOTES:

Results compared to Ontario Drinking Water Quality Standards (ODWQS) Maximum Allowable Concentration. Values highlighted GREY and bold exceed parameter guidelines

Surface Water Quality Results 1470 Highbury Avenue North, London, ON Project No. KCH-00260285

CRITERIA	PWQQ	UNITS	17-Oct-20	17-Mar-21
Colculated Decompton			SV	V1
Calculated Parameters	1	ma/l	260	210
Calculated TDS		mg/L	360	450
Carb. Alkalinity (calc. as CaCO3)		mg/L	2	2.7
Hardness (CaCO3)		mg/L	290	360
Langelier Index (@ 20C)		N/A	0.827	1.04
Langelier Index (@ 4C)		N/A	0.579	0.794
Saturation pH (@ 20C)		N/A N/A	7.1	7.16
Inorganics			1.54	7.10
Total Ammonia-N	Γ	mg/L	0.16	<0.050
Conductivity		umho/cm	640	830
Total Organic Carbon (TOC)		mg/L	85 (1)	3.8
Orthophosphate (P)	65.05	mg/L	<0.010	<0.010
pH Total Phosphorus	6.5 - 8.5	pH mg/l	7.92	7.96
Dissolved Sulphate (SO4)		mg/L	7.5	23
Turbidity		NTU	10	1.6
Alkalinity (Total as CaCO3)		mg/L	260	320
Dissolved Chloride (Cl-)		mg/L	58	59
Nitrite (N)		mg/L	<0.010	<0.010
Nitrate (N)		mg/L	<0.10	<0.10
Dissolved Calcium (Ca)		ma/l	05	110
Dissolved Calcium (Ca) Dissolved Magnesium (Mg)		mg/L	19	21
Dissolved Potassium (K)	1	mg/L	4	2
Dissolved Sodium (Na)	1	mg/L	29	35
Total Aluminum (Al)	75	ug/L	13000	9
Total Antimony (Sb)	20	ug/L	0.69	<0.50
Total Arsenic (As)	5	ug/L	7	<1.0
Total Barium (Ba)		ug/L	1400	77
Total Beryllium (Be)	1100	ug/L	0.66	<0.40
Total Boron (B)	200	ug/L	40	22
Total Calcium (Co)	0.5	ug/L	620000	<0.090
Total Chromium (Cr)	8.9	ug/L	22	<5.0
Total Cobalt (Co)	0.9	ug/L	11	<0.50
Total Copper (Cu)	5	ug/L	87	<0.90
Total Iron (Fe)	300	ug/L	27000	310
Total Lead (Pb)	5	ug/L	63	<0.50
Total Magnesium (Mg)		ug/L	40000	21000
Total Manganese (Mn)		ug/L	2300	49
Total Molybdenum (Mo)	40	ug/L	1.3	<0.50
Total Nickel (Ni)	25	ug/L	23	<1.0
Total Selenium (Se)	100	ug/L	3.5	\$2.0
Total Silicon (Si)	100	ug/L	19000	4500
Total Silver (Ag)	0.1	ug/L	0.19	<0.090
Total Sodium (Na)		ug/L	33000	34000
Total Strontium (Sr)		ug/L	1000	350
Total Thallium (TI)	0.3	ug/L	0.15	<0.050
Total Titanium (Ti)		ug/L	300	<5.0
Total Vanadium (V)	6	ug/L	23	<0.50
Total Zinc (Zn)	20	ug/L	500	<5.0
Dissolved Aluminum (Al)	r	ug/I	<4.9	<4.9
Dissolved Antimony (Sb)		ug/L	<0.50	<0.50
Dissolved Arsenic (As)	1	ug/L	<1.0	<1.0
Dissolved Barium (Ba)		ug/L	46	76
Dissolved Beryllium (Be)		ug/L	<0.40	<0.40
Dissolved Bismuth (Bi)		ug/L	<1.0	<1.0
Dissolved Boron (B)		ug/L	<10	26
Dissolved Cadmium (Cd)	ļ	ug/L	<0.090	<0.090
Dissolved Calcium (Ca)		ug/L	89000	110000
Dissolved Cohalt (Co)	ł	ug/L	<0.50	<5.0
Dissolved Copper (Cu)	1	ug/l	<0.90	<0.90
Dissolved Iron (Fe)	l	ug/L	<100	<100
Dissolved Lead (Pb)		ug/L	<0.50	<0.50
Dissolved Lithium (Li)		ug/L	<5.0	<5.0
Dissolved Magnesium (Mg)		ug/L	19000	21000
Dissolved Manganese (Mn)		ug/L	3.8	45
Dissolved Molybdenum (Mo)	ļ	ug/L	<0.50	<0.50
Dissolved Nickel (Ni)		ug/L	1.1	<1.0
Dissolved Priosphorus (P)	ł	ug/L	3600	<100
Dissolved Foldssium (K)		ug/L ug/l	<2.0	<2.0
Dissolved Silicon (Si)	1	ug/L	2200	4700
Dissolved Silver (Ag)	1	ug/L	<0.090	<0.090
Dissolved Sodium (Na)		ug/L	27000	34000
Dissolved Strontium (Sr)		ug/L	300	340
Dissolved Tellurium (Te)		ug/L	<1.0	<1.0
Dissolved Thallium (TI)		ug/L	<0.050	<0.050
Dissolved Tin (Sn)		ug/L	<1.0	<1.0
Dissolved Titanium (Ti)		ug/L	<5.0	<5.0
Dissolved Tungsten (W)		ug/L	<1.0	<1.0
Dissolved Uranium (U)		ug/L	0.55	0.63
Dissolved Zinc (Zn)	ł	ug/L	<5.0	<5.0
Dissolved Zirconium (Zr)	1	ug/L	<1.0	<1.0

 TABLE NOTES:

 Results compared to Provincial Water Quality Objectives (PWQO), Ministry of the Environment and Energy (1994, revised 1999).

 Values highlighted GREY and bold exceed parameter guidelines

Appendix J – Laboratory Chain of Custody

Your Project #: KCH-00260285-A0 Site Location: 1470 Highbury Avenue Your C.O.C. #: 797627-01-01

Attention: Mark Bertens

exp Services Inc London Branch 15701 Robin's Hill Rd Unit 2 London, ON CANADA N5V 0A5

> Report Date: 2020/10/23 Report #: R6382340 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: COR4597 Received: 2020/10/19, 09:15

Sample Matrix: Water

Samples Received: 3

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Alkalinity	2	N/A	2020/10/21	CAM SOP-00448	SM 23 2320 B m
Alkalinity	1	N/A	2020/10/22	CAM SOP-00448	SM 23 2320 B m
Carbonate, Bicarbonate and Hydroxide	3	N/A	2020/10/22	CAM SOP-00102	APHA 4500-CO2 D
Chloride by Automated Colourimetry	3	N/A	2020/10/22	CAM SOP-00463	SM 23 4500-Cl E m
Conductivity	2	N/A	2020/10/21	CAM SOP-00414	SM 23 2510 m
Conductivity	1	N/A	2020/10/22	CAM SOP-00414	SM 23 2510 m
Dissolved Organic Carbon (DOC) (1)	2	N/A	2020/10/21	CAM SOP-00446	SM 23 5310 B m
Hardness (calculated as CaCO3)	3	N/A	2020/10/21	CAM SOP 00102/00408/00447	SM 2340 B
Lab Filtered Metals Analysis by ICP	1	2020/10/20	2020/10/21	CAM SOP-00408	EPA 6010D m
Lab Filtered Metals by ICPMS	3	2020/10/20	2020/10/21	CAM SOP-00447	EPA 6020B m
Total Metals Analysis by ICPMS	1	N/A	2020/10/23	CAM SOP-00447	EPA 6020B m
Ion Balance (% Difference)	2	N/A	2020/10/22		
Anion and Cation Sum	2	N/A	2020/10/22		
Total Ammonia-N	3	N/A	2020/10/22	CAM 50P-00441	USGS 1-2522-90 m
Nitrate (NO3) and Nitrite (NO2) in Water (2)	3	N/A	2020/10/21	CAM SOP-00440	SM 23 4500-NO3I/NO2B
pH	2	2020/10/20	2020/10/21	CAM SOP-00413	SM 4500H+ B m
pH	1	2020/10/20	2020/10/22	CAM SOP-00413	SM 4500H+ B m
Orthophosphate	3	N/A	2020/10/22	CAM SOP-00461	EPA 365.1 m
Sat. pH and Langelier Index (@ 20C)	3	N/A	2020/10/22		Auto Calc
Sat. pH and Langelier Index (@ 4C)	3	N/A	2020/10/22		Auto Calc
Sulphate by Automated Colourimetry	3	N/A	2020/10/22	CAM SOP-00464	EPA 375.4 m
Total Dissolved Solids (TDS calc)	3	N/A	2020/10/22		Auto Calc
Total Organic Carbon (TOC) (3)	1	N/A	2020/10/22	CAM SOP-00446	SM 23 53108 m
Total Phosphorus (Colourimetric)	1	2020/10/21	2020/10/22	CAM SOP-00407	SM 23 4500 P B H m
Turbidity	1	N/A	2020/10/21	CAM 50P-00417	SM 23 2130 B m

Remarks:

Bureau Veritas Laboratories are accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used

Page 1 of 18

Bureau Veritas Laboratories 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

Your Project #: KCH-00260285-A0 Site Location: 1470 Highbury Avenue Your C.O.C. #: 797627-01-01

Attention: Mark Bertens

exp Services Inc London Branch 15701 Robin's Hill Rd Unit 2 London, ON CANADA N5V 0A5

> Report Date: 2020/10/23 Report #: R6382340 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: COR4597

Received: 2020/10/19, 09:15

by BV Labs are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in BV Labs profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and BV Labs in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

BV Labs liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. BV Labs has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by BV Labs, unless otherwise agreed in writing. BV Labs is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by BV Labs, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) Dissolved Organic Carbon (DOC) present in the sample should be considered as non-purgeable DOC.

(2) Values for calculated parameters may not appear to add up due to rounding of raw data and significant figures.

(3) Total Organic Carbon (TOC) present in the sample should be considered as non-purgeable TOC.

Bureau Veritas Laboritorias 28 Oct 2020 14(04)54

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Christine Gripton, Senior Project Manager Email: Christine.Gripton@bvlabs.com Phone# (519)652-9444

This report has been generated and distributed using a secure automated process.

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Total Cover Pages : 2 Page 2 of 18

Bureau Veritas Laboratóries 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

BV Labs ID	1	NXU440		NXU441		. i
Sampling Date	1	2020/10/17 02:15		2020/10/17 02:30		
COC Number		797627-01-01		797627-01-01	1	
	UNITS	MW3A	QC Batch	MW3B	RDL	QC Batch
Calculated Parameters	Contraction of the				-	
Anion Sum	me/L	6,56	7007736	8.26	N/A	7007736
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	220	7008657	320	1.0	7008657
Calculated TDS	mg/L	350	7007620	440	1.0	7007620
Carb. Alkalinity (calc. as CaCO3)	mg/L	2.2	7008657	2.3	1.0	7008657
Cation Sum	me/L	6.66	7007736	8.41	N/A	7007736
Hardness (CaCO3)	mg/L	260	7008747	350	1.0	7008747
Ion Balance (% Difference)	%	0.760	7007735	0.910	N/A	7007735
Langelier Index (@ 20C)	N/A	0.692	7007618	0.947		7007618
Langelier Index (@ 4C)	N/A	0.443	7007619	0.699	i	7007619
Saturation pH (@ 20C)	N/A	7.32	7007618	6.94		7007618
Saturation pH (@ 4C)	N/A	7.57	7007619	7.19		7007619
Inorganics					-	
Total Ammonia-N	mg/L	0.12	7012945	0.068	0.050	7012945
Conductivity	umho/cm	630	7010248	760	1.0	7010324
Dissolved Organic Carbon	mg/L	1.7	7010554	1.7	0.40	7010554
Orthophosphate (P)	mg/L	<0.010	7010447	<0.010	0.010	7010447
pH	pH	8.01	7010261	7.88		7010327
Dissolved Sulphate (SO4)	mg/L	18	7010446	31	1.0	7010446
Alkalinity (Total as CaCO3)	mg/L	230	7010242	320	1.0	7010308
Dissolved Chloride (Cl-)	mg/L	59	7010440	44	1.0	7010440
Nitrite (N)	mg/L	<0.010	7010775	<0.010	0.010	7010775
Nitrate (N)	mg/L	<0.10	7010775	0.12	0.10	7010775
Nítrate + Nitrite (N)	mg/L	<0.10	7010775	0.12	0.10	7010775
Metals						
Dissolved Aluminum (Al)	ug/L	6.0	7010389	5.7	4.9	7010389
Dissolved Antimony (Sb)	ug/L	<0.50	7010389	<0.50	0.50	7010389
Dissolved Arsenic (As)	ug/L	<1.0	7010389	<1.0	1.0	7010389
Dissolved Barium (Ba)	ug/L	150	7010389	150	2.0	7010389
Dissolved Beryllium (Be)	ug/L	<0.40	7010389	<0.40	0.40	7010389
	110/1	55	7010389	36	10	7010389

RCAP - COMPREHENSIVE (LAB FILTERED)

Page 3 of 18

Bureau Ventas Laboratories 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabis.com

BV Labs ID		NXU440		NXU441	1	1
Sampling Date	1	2020/10/17 02:15	11	2020/10/17 02:30		
COC Number		797627-01-01		797627-01-01		
	UNITS	MW3A	QC Batch	MW3B	RDL	QC Batch
Dissolved Cadmium (Cd)	ug/L	<0.090	7010389	<0.090	0.090	7010389
Dissolved Calcium (Ca)	ug/L	58000	7010389	100000	200	7010389
Dissolved Chromium (Cr)	ug/L	<5.0	7010389	<5.0	5.0	7010389
Dissolved Cobalt (Co)	ug/L	<0.50	7010389	0.55	0.50	7010389
Dissolved Copper (Cu)	ug/L	<0.90	7010389	1.7	0.90	7010389
Dissolved Iron (Fe)	ug/L	<100	7010389	<100	100	7010389
Dissolved Lead (Pb)	ug/L	<0.50	7010389	<0.50	0.50	7010389
Dissolved Magnesium (Mg)	ug/L	28000	7010389	21000	50	7010389
Dissolved Manganese (Mn)	ug/L	14	7010389	130	2.0	7010389
Dissolved Molybdenum (Mo)	ug/L	21	7010389	1.8	0.50	7010389
Dissolved Nickel (Ni)	ug/L	1.3	7010389	1.7	1.0	7010389
Dissolved Phosphorus (P)	ug/L	<100	7010389	<100	100	7010389
Dissolved Potassium (K)	ug/L	6300	7010389	2800	200	7010389
Dissolved Selenium (Se)	ug/L	<2.0	7010389	<2,0	2.0	7010389
Dissolved Silicon (Si)	ug/L	5900	7010389	5800	50	7010389
Dissolved Silver (Ag)	ug/L	<0.090	7010389	<0.090	0.090	7010389
Dissolved Sodium (Na)	ug/L	30000	7010389	33000	100	7010389
Dissolved Strontium (Sr)	ug/L	360	7010389	410	1.0	7010389
Dissolved Thallium (TI)	ug/L	<0.050	7010389	<0.050	0.050	7010389
Dissolved Titanium (Ti)	ug/L	<5.0	7010389	<5.0	5.0	7010389
Dissolved Uranium (U)	ug/L	0.78	7010389	1.2	0.10	7010389
Dissolved Vanadium (V)	ug/L	0.72	7010389	1.0	0.50	7010389
Dissolved Zinc (Zn)	ug/L	<5.0	7010389	<5.0	5.0	7010389

RCAP - COMPREHENSIVE (LAB FILTERED)

Page 4 of 18

Bureau Ventas Laboratories 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

BV Labs ID		NXU442	1	1
Sampling Date	1.11	2020/10/17 02:45		-
COC Number	1.000	797627-01-01	1	
	UNITS	SW1	RDL	QC Batch
Calculated Parameters				
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	260	1.0	7008657
Calculated TDS	mg/L	360	1.0	7007620
Carb. Alkalinity (calc. as CaCO3)	mg/L	2.0	1.0	7008657
Hardness (CaCO3)	mg/L	290	1.0	7007508
Langelier Index (@ 20C)	N/A	0.827	1	7007618
Langelier Index (@ 4C)	N/A	0.579		7007619
Saturation pH (@ 20C)	N/A	7.10		7007618
Saturation pH (@ 4C)	N/A	7.34		7007619
Inorganics				
Total Ammonia-N	mg/L	0.16	0.050	7012945
Conductivity	umho/cm	640	1.0	7010324
Total Organic Carbon (TOC)	mg/L	85 (1)	4.0	7011987
Orthophosphate (P)	mg/L	<0.010	0.010	7010447
рН	pH	7.92	1.000	7010327
Total Phosphorus	mg/L	2.2	0.1	7012446
Dissolved Sulphate (SO4)	mg/L	7.5	1.0	7010446
Turbidity	NTU	10	0.1	7010563
Alkalinity (Total as CaCO3)	mg/L	260	1.0	7010308
Dissolved Chloride (Cl-)	mg/L	58	1.0	7010440
Nitrite (N)	mg/L	<0.010	0.010	7010775
Nitrate (N)	mg/L	<0.10	0.10	7010775
Metals				
Dissolved Calcium (Ca)	mg/L	85	0.05	7010325
Dissolved Magnesium (Mg)	mg/L	19	0.05	7010325
Dissolved Potassium (K)	mg/L	4	1	7010325
Dissolved Sodium (Na)	mg/L	29	0.5	7010325
Total Aluminum (Al)	ug/L	13000	4.9	7014865
Total Antimony (Sb)	ug/L	0.69	0.50	7014865
Total Arsenic (As)	ug/L	7.0	1.0	7014865
RDL = Reportable Detection Limit QC Batch = Quality Control Batch (1) Due to the sample matrix, samp adjusted accordingly	ole required	dilution. Detect	tion lim	ít was

RCAP - SURFACE WATER (WATER)

Page 5 of 18

Bureau Veritas Laboratories 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free; 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

BV Labs ID		NXU442		
Sampling Date		2020/10/17 02:45		
COC Number		797627-01-01	1 - 1	- 1
	UNITS	SW1	RDL	QC Batch
Total Barium (Ba)	ug/L	1400	2.0	7014865
Total Beryllium (Be)	ug/L	0.66	0.40	7014865
Total Boron (B)	ug/L	40	10	7014865
Total Cadmium (Cd)	ug/L	2.0	0.090	7014865
Total Calcium (Ca)	ug/L	630000	1000	7014865
Total Chromium (Cr)	ug/L	22	5.0	7014865
Total Cobalt (Co)	ug/L	11	0.50	7014865
Total Copper (Cu)	ug/L	87	0.90	7014865
Total Iron (Fe)	ug/L	27000	100	7014865
Total Lead (Pb)	ug/L	63	0.50	7014865
Total Magnesium (Mg)	ug/L	40000	50	7014865
Total Manganese (Mn)	ug/L	2300	2.0	7014865
Total Molybdenum (Mo)	ug/L	1.3	0.50	7014865
Total Nickel (Ni)	ug/L	23	1.0	7014865
Total Potassium (K)	ug/L	11000	200	7014865
Total Selenium (Se)	ug/L	3.5	2.0	7014865
Total Silicon (Si)	ug/L	19000	50	7014865
Total Silver (Ag)	ug/L	0.19	0.090	7014865
Total Sodium (Na)	ug/L	33000	100	7014865
Total Strontium (Sr)	ug/L	1000	1.0	7014865
Total Thallium (TI)	ug/L	0.15	0.050	7014865
Total Titanium (Ti)	ug/L	300	5.0	7014865
Total Vanadium (V)	ug/L	23	0.50	7014865
Total Zinc (Zn)	ug/L	500	5.0	7014865

RCAP - SURFACE WATER (WATER)

Page 6 of 18

Bureau Ventas Laboratories 6740 Campobello Road; Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

BV Labs ID	1	NXU442		
Sampling Date	12.1	2020/10/17 02:45		1.12
COC Number	11 1	797627-01-01		
1	UNITS	SW1	RDL	QC Batch
Metals	-	_		
Dissolved Aluminum (Al)	ug/L	<4.9	4.9	7010389
Dissolved Antimony (Sb)	ug/L	<0.50	0.50	7010389
Dissolved Arsenic (As)	ug/L	<1.0	1.0	7010389
Dissolved Barium (Ba)	ug/L	46	2.0	7010389
Dissolved Beryllium (Be)	ug/L	<0.40	0.40	7010389
Dissolved Bismuth (Bi)	ug/L	<1.0	1.0	7010389
Dissolved Boron (B)	ug/L	<10	10	7010389
Dissolved Cadmium (Cd)	ug/L	<0,090	0.090	7010389
Dissolved Calcium (Ca)	ug/L	89000	200	7010389
Dissolved Chromium (Cr)	ug/L	<5.0	5.0	7010389
Dissolved Cobalt (Co)	ug/L	<0.50	0.50	7010389
Dissolved Copper (Cu)	ug/L	<0.90	0.90	7010389
Dissolved Iron (Fe)	ug/L	<100	100	7010389
Dissolved Lead (Pb)	ug/L	<0.50	0.50	7010389
Dissolved Lithium (Li)	ug/L	<5.0	5.0	7010389
Dissolved Magnesium (Mg)	ug/L	19000	50	7010389
Dissolved Manganese (Mn)	ug/L	3.8	2.0	7010389
Dissolved Molybdenum (Mo)	ug/L	<0.50	0.50	7010389
Dissolved Nickel (Ni)	ug/L	1.1	1.0	7010389
Dissolved Phosphorus (P)	ug/L	100	100	7010389
Dissolved Potassium (K)	ug/L	3600	200	7010389
Dissolved Selenium (Se)	ug/L	<2.0	2.0	7010389
Dissolved Silicon (Si)	ug/L	2200	50	7010389
Dissolved Silver (Ag)	ug/L	<0.090	0.090	7010389
Dissolved Sodium (Na)	ug/L	27000	100	7010389
Dissolved Strontium (Sr)	ug/L	300	1.0	7010389
Dissolved Tellurium (Te)	ug/L	<1.0	1.0	7010389
Dissolved Thallium (TI)	ug/L	<0.050	0.050	7010389
Dissolved Tin (Sn)	ug/L	<1.0	1.0	7010389
Dissolved Titanium (Ti)	ug/L	<5.0	5.0	7010389
Dissolved Tungsten (W)	ug/L	<1.0	1.0	7010389

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

Page 7 of 18

Bureau Ventas Laboratories 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bviabs.com

BV Labs ID		NXU442		
Sampling Date		2020/10/17 02:45		1.1
COC Number		797627-01-01		
	UNITS	SW1	RDL	QC Batch
Dissolved Uranium (U)	ug/L	0.55	0.10	7010389
Dissolved Vanadium (V)	ug/L	<0.50	0.50	7010389
Dissolved Zinc (Zn)	ug/L	<5.0	5.0	7010389
Discolund Zirconium (Zr)	ug/t	<1.0	1.0	7010389

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

Page 8 of 18

Bureau Ventas Laboratories 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bviats.com

TEST SUMMARY

BV Labs ID:	NXU440	Collected:	2020/10/17
Sample ID:	MW3A	Shipped:	
Matrix:	Water	Received:	2020/10/19

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	7010242	N/A	2020/10/22	Yogesh Patel
Carbonate, Bicarbonate and Hydroxide	CALC	7008657	N/A	2020/10/22	Automated Statchk
Chloride by Automated Colourimetry	KONE	7010440	N/A	2020/10/22	Deonarine Ramnarine
Conductivity	AT	7010248	N/A.	2020/10/22	Yogesh Patel
Dissolved Organic Carbon (DOC)	TOCV/NDIR	7010554	N/A	2020/10/21	Nimarta Singh
Hardness (calculated as CaCO3)		7008747	N/A	2020/10/21	Automated Statchk
Lab Filtered Metals by ICPMS	ICP/MS	7010389	2020/10/20	2020/10/21	Arefa Dabhad
Ion Balance (% Difference)	CALC	7007735	N/A	2020/10/22	Automated Statchk
Anion and Cation Sum	CALC	7007736	N/A	2020/10/22	Automated Statchk
Total Ammonia-N	LACH/NH4	7012945	N/A	2020/10/22	Amanpreet Sappal
Nitrate (NO3) and Nitrite (NO2) in Water	LACH	7010775	N/A	2020/10/21	Chandra Nandlal
pH	AT	7010261	2020/10/20	2020/10/22	Yogesh Patel
Orthophosphate	KONE	7010447	N/A	2020/10/22	Alina Dobreanu
Sat. pH and Langelier Index (@ 20C)	CALC	7007618	N/A	2020/10/22	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	7007619	N/A	2020/10/22	Automated Statchk
Sulphate by Automated Colourimetry	KONE	7010446	N/A	2020/10/22	Deonarine Ramnarine
Total Dissolved Solids (TDS calc)	CALC	7007620	N/A	2020/10/22	Automated Statchk

BV Labs ID: NXU441 Sample ID: MW3B Matrix: Water Collected: 2020/10/17 Shipped: Received: 2020/10/19

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	7010308	N/A	2020/10/21	Yogesh Patel
Carbonate, Bicarbonate and Hydroxide	CALC	7008657	N/A	2020/10/22	Automated Statchk
Chloride by Automated Colourimetry	KONE	7010440	N/A	2020/10/22	Deonarine Ramnarine
Conductivity	AT	7010324	N/A	2020/10/21	Yogesh Patel
Dissolved Organic Carbon (DOC)	TOCV/NDIR	7010554	N/A	2020/10/21	Nimarta Singh
Hardness (calculated as CaCO3)		7008747	N/A	2020/10/21	Automated Statchk
Lab Filtered Metals by ICPMS	ICP/MS	7010389	2020/10/20	2020/10/21	Arefa Dabhad
Ion Balance (% Difference)	CALC	7007735	N/A	2020/10/22	Automated Statchk
Anion and Cation Sum	CALC	7007736	N/A	2020/10/22	Automated Statchk
Total Ammonia-N	LACH/NH4	7012945	N/A	2020/10/22	Amanpreet Sappal
Nitrate (NO3) and Nitrite (NO2) in Water	LACH	7010775	N/A	2020/10/21	Chandra Nandlal
pH	AT	7010327	2020/10/20	2020/10/21	Yogesh Patel
Orthophosphate	KONE	7010447	N/A	2020/10/22	Alina Dobreanu
Sat. pH and Langelier Index (@ 20C)	CALC	7007618	N/A	2020/10/22	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	7007619	N/A	2020/10/22	Automated Statchk
Sulphate by Automated Colourimetry	KONE	7010446	N/A	2020/10/22	Deonarine Ramnarine
Total Dissolved Solids (TDS calc)	CALC	7007620	N/A	2020/10/22	Automated Statchk

Page 9 of 18

Bureau Ventas Laboratories 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

TEST SUMMARY

Collected:	2020/10/17
Shipped:	
Received:	2020/10/19
	Collected: Shipped: Received:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	7010308	N/A	2020/10/21	Yogesh Patel
Carbonate, Bicarbonate and Hydroxide	CALC	7008657	N/A	2020/10/22	Automated Statchk
Chloride by Automated Colourimetry	KONE	7010440	N/A	2020/10/22	Deonarine Ramnarine
Conductivity	AT	7010324	N/A.	2020/10/21	Yogesh Patel
Hardness (calculated as CaCO3)		7007508	N/A	2020/10/21	Automated Statchk
Lab Filtered Metals Analysis by ICP	ICP	7010325	2020/10/20	2020/10/21	Medhat Nasr
Lab Filtered Metals by ICPMS	ICP/MS	7010389	2020/10/20	2020/10/21	Arefa Dabhad
Total Metals Analysis by ICPMS	ICP/MS	7014865	N/A	2020/10/23	Arefa Dabhad
Total Ammonia-N	LACH/NH4	7012945	N/A	2020/10/22	Amanpreet Sappal
Nitrate (NO3) and Nitrite (NO2) in Water	LACH	7010775	N/A	2020/10/21	Chandra Nandlal
рН	AT	7010327	2020/10/20	2020/10/21	Yogesh Patel
Orthophosphate	KONE	7010447	N/A	2020/10/22	Alina Dobreanu
Sat. pH and Langelier Index (@ 20C)	CALC	7007618	N/A	2020/10/22	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	7007619	N/A	2020/10/22	Automated Statchk
Sulphate by Automated Colourimetry	KONE	7010446	N/A	2020/10/22	Deonarine Ramnarine
Total Dissolved Solids (TDS calc)	CALC	7007620	N/A	2020/10/22	Automated Statchk
Total Organic Carbon (TOC)	TOCV/NDIR	7011987	N/A	2020/10/22	Nimarta Singh
Total Phosphorus (Colourimetric)	LACH/P	7012446	2020/10/21	2020/10/22	Shivani Shivani
Turbidity	AT	7010563	N/A	2020/10/21	Viorica Rotaru

BV Labs ID:	NXU442 Dup
Sample ID:	SW1
Matrix:	Water

Collected: 2020/10/17 Shipped: Received: 2020/10/19

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst	_
Lab Filtered Metals by ICPMS	ICP/MS	7010389	2020/10/20	2020/10/21	Arefa Dabhad	
Turbidity	ÁT	7010563	N/A	2020/10/21	Viorica Rotaru	-

Page 10 of 18

Bureau Ventas Laboratories 6740 Campobelin Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1 5.0°C

Results relate only to the items tested.

Page 11 of 18

Bureau Ventas Laboratories 6740 Campobello Road, Missisauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

QUALITY ASSURANCE REPORT

exp Services Inc Client Project #: KCH-00260285-A0 Site Location: 1470 Highbury Avenue Sampler Initials: M.B

			Matrix	Spike	SPIKED	BLANK	Method	Blank	RP	D	QC Sta	indard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
7010242	Alkalinity (Total as CaCO3)	2020/10/21			96	85 - 115	<1.0	mg/L	0.97	20		
7010248	Conductivity	2020/10/21			99	85 - 115	<1.0	umho/c m	0	25		
7010261	pH	2020/10/21			102	98 - 103			0.74	N/A		
7010308	Alkalinity (Total as CaCO3)	2020/10/21			97	85 - 115	<1.0	mg/L	0.75	20		
7010324	Conductivity	2020/10/21			98	85 - 115	<1.0	umho/c m	0	25		
7010325	Dissolved Calcium (Ca)	2020/10/21	105	80 - 120	103	80 - 120	<0.05	mg/L	0.42	25		
7010325	Dissolved Magnesium (Mg)	2020/10/21	101	80 - 120	98	80 - 120	<0.05	mg/L	0.47	25		
7010325	Dissolved Potassium (K)	2020/10/21	102	80 - 120	100	80 - 120	<1	mg/L	NC	25		
7010325	Dissolved Sodium (Na)	2020/10/21	101	80 - 120	100	80 - 120	<0.5	mg/L	0.020	25		
7010327	рН	2020/10/21			102	98 - 103			0.61	N/A		
7010389	Dissolved Aluminum (Al)	2020/10/21	102	80 - 120	103	80 - 120	<4.9	ug/L	NC	20		
7010389	Dissolved Antimony (Sb)	2020/10/21	104	80 - 120	101	80 - 120	<0.50	ug/L	NC	20		
7010389	Dissolved Arsenic (As)	2020/10/21	99	80 - 120	100	80 - 120	<1.0	ug/L	NC	20		
7010389	Dissolved Barium (Ba)	2020/10/21	101	80 - 120	101	80 - 120	<2.0	ug/L	1.6	20		
7010389	Dissolved Beryllium (Be)	2020/10/21	97	80 - 120	95	80 - 120	<0.40	ug/L	NC	20		
7010389	Dissolved Bismuth (Bi)	2020/10/21	95	80 - 120	95	80 - 120	<1.0	ug/L	NC	20		
7010389	Dissolved Boron (B)	2020/10/21	92	80 - 120	93	80 - 120	<10	ug/L	NC	20		
7010389	Dissolved Cadmium (Cd)	2020/10/21	101	80 - 120	99	80 - 120	<0.090	ug/L	NC	20		
7010389	Dissolved Calcium (Ca)	2020/10/21	100	80 - 120	100	80 - 120	<200	ug/L	0.051	20		
7010389	Dissolved Chromium (Cr)	2020/10/21	94	80 - 120	95	80 - 120	<5.0	ug/L	NC	20		
7010389	Dissolved Cobalt (Co)	2020/10/21	98	80 - 120	100	80 - 120	<0.50	ug/L	NC	20		
7010389	Dissolved Copper (Cu)	2020/10/21	105	80 - 120	103	80 - 120	<0.90	ug/L	NC	20		
7010389	Dissolved Iron (Fe)	2020/10/21	97	80 - 120	99	80 - 120	<100	ug/L	NC	20		
7010389	Dissolved Lead (Pb)	2020/10/21	97	80 - 120	97	80 - 120	<0.50	ug/L	NC	20		
7010389	Dissolved Lithium (Li)	2020/10/21	102	80 - 120	103	80 - 120	<5.0	ug/L	NC	20		
7010389	Dissolved Magnesium (Mg)	2020/10/21	94	80 - 120	100	80 - 120	<50	ug/L	0.41	20		
7010389	Dissolved Manganese (Mn)	2020/10/21	98	80 - 120	101	80 - 120	<2.0	ug/L	NC	20		
7010389	Dissolved Molybdenum (Mo)	2020/10/21	98	80 - 120	96	80 - 120	<0.50	ug/L	NC	20		
7010389	Dissolved Nickel (Ni)	2020/10/21	95	80 - 120	98	80 - 120	<1.0	ug/L	8.7	20		

Page 12 of 18

Bureau Veritas Laboratories 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toli-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

QUALITY ASSURANCE REPORT(CONT'D)

exp Services Inc Client Project #: KCH-00260285-A0 Site Location: 1470 Highbury Avenue Sampler Initials: M.B

			Matrix	Spike	SPIKED	BLANK	Method E	Blank	RP	RPD		indard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
7010389	Dissolved Phosphorus (P)	2020/10/21	97	80 - 120	115	80 - 120	<100	ug/L	0.34	20		
7010389	Dissolved Potassium (K)	2020/10/21	103	80 - 120	103	80 - 120	<200	ug/L	1.4	20		
7010389	Dissolved Selenium (Se)	2020/10/21	98	80 - 120	100	80 - 120	<2.0	ug/L	NC	20		
7010389	Dissolved Silicon (Si)	2020/10/21	102	80 - 120	102	80 - 120	<50	ug/L	0.11	20		
7010389	Dissolved Silver (Ag)	2020/10/21	95	80 - 120	93	80 - 120	<0.090	ug/L	NC	20	ĺ	
7010389	Dissolved Sodium (Na)	2020/10/21	95	80 - 120	99	80 - 120	<100	ug/L	0.39	20		
7010389	Dissolved Strontium (Sr)	2020/10/21	99	80 - 120	101	80 - 120	<1.0	ug/L	0.84	20		
7010389	Dissolved Tellurium (Te)	2020/10/21	105	80 - 120	103	80 - 120	<1.0	ug/L	NC	20		
7010389	Dissolved Thallium (Tl)	2020/10/21	102	80 - 120	98	80 - 120	<0.050	ug/L	NC	20		
7010389	Dissolved Tin (Sn)	2020/10/21	104	80 - 120	100	80 - 120	<1.0	ug/L	NC	20		
7010389	Dissolved Titanium (Ti)	2020/10/21	101	80 - 120	100	80 - 120	<5.0	ug/L	NC	20		
7010389	Dissolved Tungsten (W)	2020/10/21	98	80 - 120	93	80 - 120	<1.0	ug/L	NC	20		
7010389	Dissolved Uranium (U)	2020/10/21	98	80 - 120	99	80 - 120	<0.10	ug/L	6.1	20		
7010389	Dissolved Vanadium (V)	2020/10/21	98	80 - 120	98	80 - 120	<0.50	ug/L	NC	20		
7010389	Dissolved Zinc (Zn)	2020/10/21	97	80 - 120	100	80 - 120	<5.0	ug/L	NC	20		
7010389	Dissolved Zirconium (Zr)	2020/10/21	105	80 - 120	103	80 - 120	<1.0	ug/L	NC	20		
7010440	Dissolved Chloride (Cl-)	2020/10/22	84	80 - 120	104	80 - 120	<1.0	mg/L	2.2	20		
7010446	Dissolved Sulphate (SO4)	2020/10/22	125	75 - 125	102	80 - 120	<1.0	mg/L	2.3	20		
7010447	Orthophosphate (P)	2020/10/22	NC	75 - 125	99	80 - 120	<0.010	mg/L	0	25		
7010554	Dissolved Organic Carbon	2020/10/21	92	80 - 120	97	80 - 120	<0.40	mg/L	3.4	20		
7010563	Turbidity	2020/10/21			110	85 - 115	<0.1	NTU	2.8	20		
7010775	Nitrate (N)	2020/10/21	97	80 - 120	100	80 - 120	<0.10	mg/L	3.7	20		
7010775	Nitrite (N)	2020/10/21	91	80 - 120	105	80 - 120	<0.010	mg/L	NC	20		
7011987	Total Organic Carbon (TOC)	2020/10/22	91	80 - 120	97	80 - 120	<0.40	mg/L	3.0	20		
7012446	Total Phosphorus	2020/10/22	95	80 - 120	100	80 - 120	<0.004	mg/L	NC	20	95	80 - 120
7012945	Total Ammonia-N	2020/10/22	89	75 - 125	105	80 - 120	<0.050	mg/L	0.32	20		
7014865	Total Aluminum (Al)	2020/10/23	105	80 - 120	102	80 - 120	<4.9	ug/L	NC	20		
7014865	Total Antimony (Sb)	2020/10/23	103	80 - 120	101	80 - 120	<0.50	ug/L	NC	20		
7014865	Total Arsenic (As)	2020/10/23	98	80 - 120	98	80 - 120	<1.0	ug/L	NC	20		
7014865	Total Barium (Ba)	2020/10/23	101	80 - 120	99	80 - 120	<2.0	ug/L				
7014865	Total Beryllium (Be)	2020/10/23	105	80 - 120	105	80 - 120	<0.40	ug/L				

Page 13 of 18

Bureau Veritas Laboratories 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

QUALITY ASSURANCE REPORT(CONT'D)

exp Services Inc Client Project #: KCH-00260285-A0 Site Location: 1470 Highbury Avenue Sampler Initials: M.B

			Matrix	Spike	SPIKED	BLANK	Method I	Blank	RP	D	QC Sta	ndard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
7014865	Total Boron (B)	2020/10/23	97	80 - 120	99	80 - 120	<10	ug/L				
7014865	Total Cadmium (Cd)	2020/10/23	98	80 - 120	98	80 - 120	<0.090	ug/L	NÇ	20		
7014865	Total Calcium (Ca)	2020/10/23	123 (1)	80 - 120	97	80 - 120	<200	ug/L				
7014865	Total Chromium (Cr)	2020/10/23	96	80 - 120	96	80 - 120	<5.0	ug/L	NC	20		
7014865	Total Cobalt (Co)	2020/10/23	95	80 - 120	97	80 - 120	<0.50	ug/L	NC	20		
7014865	Total Copper (Cu)	2020/10/23	96	80 - 120	101	80 - 120	<0.90	ug/L	NC	20		
7014865	Total Iron (Fe)	2020/10/23	95	80 - 120	98	80 - 120	<100	ug/L	NC	20		
7014865	Total Lead (Pb)	2020/10/23	95	80 - 120	97	80 - 120	<0.50	ug/L	NC	20		
7014865	Total Magnesium (Mg)	2020/10/23	98	80 - 120	100	80 - 120	<50	ug/L				
7014865	Total Manganese (Mn)	2020/10/23	96	80 - 120	97	80 - 120	<2.0	ug/L	NC	20		
7014865	Total Molybdenum (Mo)	2020/10/23	98	80 - 120	96	80 - 120	<0.50	ug/L	13	20		
7014865	Total Nickel (Ni)	2020/10/23	94	80 - 120	96	80 - 120	<1.0	ug/L	NC	20		
7014865	Total Potassium (K)	2020/10/23	100	80 - 120	98	80 - 120	<200	ug/L				
7014865	Total Selenium (Se)	2020/10/23	105	80 - 120	104	80 - 120	<2.0	ug/L	NC	20		
7014865	Total Silicon (Si)	2020/10/23	99	80 - 120	96	80 - 120	<50	ug/L				
7014865	Total Silver (Ag)	2020/10/23	91	80 - 120	93	80 - 120	<0.090	ug/L	NC	20		
7014865	Total Sodium (Na)	2020/10/23	86	80 - 120	96	80 - 120	<100	ug/L				
7014865	Total Strontium (Sr)	2020/10/23	97	80 - 120	94	80 - 120	<1.0	ug/L				
7014865	Total Thallium (TI)	2020/10/23	97	80 - 120	98	80 - 120	<0.050	ug/L				
7014865	Total Titanium (Ti)	2020/10/23	99	80 - 120	97	80 - 120	<5.0	ug/L	NC	20		
7014865	Total Vanadium (V)	2020/10/23	96	80 - 120	94	80 - 120	<0.50	ug/L				

Page 14 of 18

Bureau Veritas Laboratories 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

QUALITY ASSURANCE REPORT(CONT'D)

exp Services Inc Client Project #: KCH-00260285-A0 Site Location: 1470 Highbury Avenue Sampler Initials: M.B

			Matrix	Spike	SPIKED	BLANK	Method E	Blank	RP	D	QC Sta	ndard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
7014865	Total Zinc (Zn)	2020/10/23	97	80 - 120	98	80 - 120	<5.0	ug/L	NC	20		

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

(1) Recovery or RPD for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria.

Page 15 of 18

Bureau Veritas Laboratories 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Ewa Pranjic, M.Sc., C.Chem, Scientific Specialist

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Page 16 of 18

Bureau Veritas Laboratories 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

								When	there	15 > Jr	F	Prese visible	ence	of \ iculot	/isib e/seo	le P.	artic 1. the	ulate	e/Se	dim II be r	ent ecoro	led in	the fi	eld h	elow	ÇA	M ECD Pa	01013/ ige 1 et	5	
															8	ottle	Турез	;												
				lr	norgan	ics	······	ļ		,		0	rgani	cs		•		·			Hyd	rocar	bons		······		Vola	tiles		Oth
	Sample ID	Ail	аvı	εN	General	ня	Metals (Diss.)	Organic 1 of 2	Organic 2 of 2	P(8 1012	PCB Z of 2	Pest/ Herb 1 of 2	Pest/ 1 Hezb 2 of 2	SVCK / AEN 1 1-6 2	SVOC/ ABN 2 of 2	PAH 1 of 2	PAH 2 of 2	Diawin /Furuis	n vəta	F1 Vial 2	F1 Vial 3	Е). 904 4	1234 3.012	12-64 2 of 2	F4G	VOC Vial 3	voc vatz	VOC Viol 3	VOC Vial 4	Ni
1	MW.3A	S			3.5		1.5		1									:												2.
2	MW513	5																1												
3	Sull	S																												
4										1							1							 						
5																														
6										 		-											1							
7																								 1						
8	I					 	1						 									-								
9											1																			
10													ļ																	
				J			1				1	±										<u> </u>]	I					l.	
10	Comments:																												-	
		leg	end:			,								I																
		P	Name	n led P.	articulate										R	ecord	ed By	r (ogaat	ang p	d)	4	1I		Des	hai	Ū	20	1201	UN	(19
		TS	1.00	Settled	Sedimeo	t ipost	over to	etton d	Contain	et as h	· ~ }										·>				-			<u></u>		11
		s	Sarage	a at gra	ater than	(5) 12	nar bur	Sec 103.	iret.o					1																

Page 17 of 18

.

	INVO	E TO:	1		REI	PORT TO				T		PROJECT IN	FORMATION			Laboratory Use	Only:
mpany Nar	#28124 exp Service	es Inc	co	mpany Name	EXT					Ouenation #		B91718			-	BV Labs Job #:	Bottle Order #
ntion	Accounts Payable		AR	ant cn	Mart Bu	-2-5				POB							100100000000000000000000000000000000000
1055	15701 Robin's Hill R	d Unit 2	Ad	J ess			~~~~			Project		KCH-00	260285-A0				525.23
	London ON N5V DA:	(610) 063	1150	******			4			Proyect Name	6	1470 14	inh A			COC #	Project Manage
r	AP@exp.com.karen	Burke@exp.com.Lo-Ell	en Mitton Fr	al 7	Merch Car	Fax	0.00			Site #		1470 Hig 7 /	noury Avenu		- 160000	NUMPERAL A DELLA REPORT	Christine Gron
MOE R	EGULATED DRINKING W	ATER OR WATER INTEN	DED FOR HUM	N CONSUMPTI	ON MUST BE		1	<u> </u>	A?	ALYSIS REQU	JESTED -	PLEASE BE S	PLC/PIC	<u>}</u>	1	Fur nound Time (TAT) R	equand
	SUBMITTED ON	THE 8V LABS DRINKING	WATER CHAIN	OF CUSTODY		~			1		T	Ī				Picase provide advance notice fi	or rush projects
Regu	lation 153 (2011)	Other Reg	ulations	Spec	al lestructions	rcla									Regular (Sta	ndard) TAT: (Rus:TAT is not specified)	
ve 1	RasiPark Medium Fin	CCME Sandary	y Sewe: Bylaw			2 es			1						Standard TAT =	5-7 W14 ng days for most tests	
sie 2 Ne S	Lina Com Coorso	Reg 558 Storm S	iewer Bylaw			tptes (g / C	-140	1 2	10						Pteaso neto: Sta days - contact y:	indans 141 for ciritain rests soch as 6 Siz Provid Manager för details	100 and 5 to Rumon a
5-a		PWGO Reg 4	r YC Table	•		ed .	New Pe	1.5	1.1.84						Job Specific F	tush TAT of applies to entire subr	nission)
		0:ner				l'itte letai	atu-o	1	100						Date Required		ne Requires
	Include Criteria on	Certificate of Analysis (Y-1	v)?			aeld N		- 45 - 45	06446						Hush Confernat	01 fui filor j0	ailat (or #)
San	np & Barcode 1 also	Sample Cotarion I thrift car ca	Cate Same	aa firenaana	en Maria		Š.	ŝ		ļ					For Balles	f.or ~	erts
		Mw 3/:	6.1.23	- 2.15	GW	l	X								4	Lan fui Tesulue	Parsi
	,	10.33		12 30	GW	ĺ	N	1		1					4	$\frac{1}{2}a^{\frac{1}{2}} = b$	
	-		10	7.44	SW			X	X.	+					5	Las by here	C.
							+		+	+						<u>s. Elsever</u>	
					SW	_		•	-							19-Oct-20 09:1	5
								1							Ch	ristine Gripton	
									+	+					I I (12 1);	A A CHARLEN AND A A A A A A A A A A A A A A A A A	
																C0R4597	
					l										DJN	ENV-916	
							1		1					•			
									+						+	RECIDIN	MOON-
					- I			[a spag war war is i i fuit	◆二乙烯(E2) 200, 6 萬
									+						++	ight beings	
ţ,	RELINQUISHED BY: ISignatu	re:Print) Date	(YY/MM/OD)	Time	RECEIVED	BY (Signature)	Print)		Date. (YY,	MM:DD)	Time	e	f jars used and		Laborator	v Use Only	
4		<u>e tere pel</u>		Cin det	mater	244	200	inte	الدين	1916	<u>م 14</u>	5	101 300 11100	Tonia Sensitive	3/5	Custody Se	zał Yes

Your Project #: KCH-00260285-A0 Site Location: 1470 Highbury Avenue Your C.O.C. #: 817256-01-01

Attention: Heather Jaggard

exp Services Inc London Branch 15701 Robin's Hill Rd Unit 2 London, ON CANADA N5V 0A5

> Report Date: 2021/03/24 Report #: R6567860 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C172774

Received: 2021/03/17, 15:40

Sample Matrix: Water # Samples Received: 3

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Alkalinity	3	N/A	2021/03/19	CAM SOP-00448	SM 23 2320 B m
Carbonate, Bicarbonate and Hydroxide	3	N/A	2021/03/22	CAM SOP-00102	APHA 4500-CO2 D
Chloride by Automated Colourimetry	3	N/A	2021/03/23	CAM SOP-00463	SM 23 4500-CI E m
Conductivity	3	N/A	2021/03/19	CAM SOP-00414	SM 23 2510 m
Dissolved Organic Carbon (DOC) (1)	2	N/A	2021/03/19	CAM SOP-00446	SM 23 5310 B m
Hardness (calculated as CaCO3)	2	N/A	2021/03/23	CAM SOP 00102/00408/00447	SM 2340 B
Hardness (calculated as CaCO3)	1	N/A	2021/03/24	CAM SOP 00102/00408/00447	SM 2340 B
Lab Filtered Metals Analysis by ICP	1	2021/03/19	2021/03/23	CAM SOP-00408	EPA 6010D m
Lab Filtered Metals by ICPMS	2	2021/03/19	2021/03/22	CAM SOP-00447	EPA 6020B m
Lab Filtered Metals by ICPMS	1	2021/03/19	2021/03/23	CAM SOP-00447	EPA 6020B m
Total Metals Analysis by ICPMS	1	N/A	2021/03/22	CAM SOP-00447	EPA 6020B m
Ion Balance (% Difference)	2	N/A	2021/03/23		
Anion and Cation Sum	2	N/A	2021/03/23		
Total Ammonia-N	3	N/A	2021/03/22	CAM SOP-00441	USGS 1-2522-90 m
Nitrate (NO3) and Nitrite (NO2) in Water (2)	3	N/A	2021/03/19	CAM SOP-00440	SM 23 4500-NO3I/NO2B
pH	3	2021/03/19	2021/03/19	CAM SOP-00413	SM 4500H+ B m
Orthophosphate	3	N/A	2021/03/22	CAM SOP-00461	EPA 365.1 m
Sat. pH and Langelier Index (@ 20C)	2	N/A	2021/03/23		Auto Calc
Sat. pH and Langelier Index (@ 20C)	1	N/A	2021/03/24		Auto Calc
Sat. pH and Langelier Index (@ 4C)	2	N/A	2021/03/23		Auto Calc
Sat. pH and Langelier Index (@ 4C)	1	N/A	2021/03/24		Auto Calc
Sulphate by Automated Colourimetry	3	N/A	2021/03/22	CAM SOP-00464	EPA 375.4 m
Total Dissolved Solids (TDS calc)	2	N/A	2021/03/23		Auto Calc
Total Dissolved Solids (TDS calc)	1	N/A	2021/03/24		Auto Calc
Total Organic Carbon (TOC) (3)	1	N/A	2021/03/20	CAM SOP-00446	SM 23 5310B m
Total Phosphorus (Colourimetric)	1	2021/03/22	2021/03/24	CAM SOP-00407	SM 23 4500 P B H m
Turbidity	1	N/A	2021/03/19	CAM SOP-00417	SM 23 2130 B m

Page 1 of 17

Bureau Venitas Laboratories 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

Your Project #: KCH-00260285-A0 Site Location: 1470 Highbury Avenue Your C.O.C. #: 817256-01-01

Attention: Heather Jaggard

exp Services Inc London Branch 15701 Robin's Hill Rd Unit 2 London, ON CANADA N5V 0A5

> Report Date: 2021/03/24 Report #: R6567860 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C172774 Received: 2021/03/17, 15:40 <u>Remarks:</u>

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) Dissolved Organic Carbon (DOC) present in the sample should be considered as non-purgeable DOC.

(2) Values for calculated parameters may not appear to add up due to rounding of raw data and significant figures.

(3) Total Organic Carbon (TOC) present in the sample should be considered as non-purgeable TOC.

Page 2 of 17

Bureau Venitas Laboratóries 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bylabs.com

Your Project #: KCH-00260285-A0 Site Location: 1470 Highbury Avenue Your C.O.C. #: 817256-01-01

Attention: Heather Jaggard

exp Services Inc London Branch 15701 Robin's Hill Rd Unit 2 London, ON CANADA N5V 0A5

> Report Date: 2021/03/24 Report #: R6567860 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C172774 Received: 2021/03/17, 15:40

Encryption Key

Bursau Verites 24 Nor 2021 17164185

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Christine Gripton, Senior Project Manager

Email: Christine.Gripton@bureauveritas.com

Phone# (519)652-9444

This report has been generated and distributed using a secure automated process.

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Total Cover Pages : 3 Page 3 of 17

Bureau Veritas Laboratories 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

PCN803		
21/03/17		
256-01-01		1.1
МШЗА	RDL	QC Batch
6.92	N/A	7255601
260	1.0	7254542
370	1,0	7255604
3.4	1.0	7254542
7.07	N/A	7255601
290	1.0	7254512
1.08	N/A	7255095
0.966	10.00	7255602
0.717		7255603
7.18		7255602
7.43		7255603
<0.050	0.050	7256954
680	1.0	7256367
0.91	0.40	7256881
<0.010	0.010	7256525
8.15		7256369
28	1.0	7256524
260	1.0	7256364
41	1.0	7256520
<0.010	0.010	7256379
<0.10	0.10	7256379
<0.10	0.10	7256379
<4.9	4.9	7256889
<0.50	0.50	7256889
<1.0	1.0	7256889
130	2.0	7256889
<0.40	0.40	7256889
51	10	7256889
<0.090	0.090	7256889
<(51 0.090	51 10 0.090 0.090

RCAP - COMPREHENSIVE (LAB FILTERED)

Page 4 of 17

Bureau Ventas Laboratories 6740 Campobelin Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

BV Labs ID		PCN802	PCN803		
Sampling Date		2021/03/17	2021/03/17		
COC Number		817256-01-01	817256-01-01		1.10
	UNITS	MW3B	MW3A	RDL	QC Batch
Dissolved Calcium (Ca)	ug/L	110000	69000	200	7256889
Dissolved Chromium (Cr)	ug/L	<5.0	<5.0	5.0	7256889
Dissolved Cobalt (Co)	ug/L	<0.50	<0.50	0.50	7256889
Dissolved Copper (Cu)	ug/L	2.5	1,1	0,90	7256889
Dîssolved Iron (Fe)	ug/L	<100	<100	100	7256889
Dîssolved Lead (Pb)	ug/L	<0.50	<0,50	0.50	7256889
Dissolved Magnesium (Mg)	ug/L	20000	29000	50	7256889
Dissolved Manganese (Mn)	ug/L	<2.0	3.3	2.0	7256889
Dissolved Molybdenum (Mo)	ug/L	<0.50	6.9	0.50	7256889
Dissolved Nickel (Ni)	ug/L	2.5	1.0	1.0	7256889
Dissolved Phosphorus (P)	ug/L	<100	<100	100	7256889
Dissolved Potassium (K)	ug/L	1500	4100	200	7256889
Dissolved Selenium (Se)	ug/L	<2.0	<2.0	2.0	7256889
Dissolved Silicon (Si)	ug/L	4600	6400	50	7256889
Dissolved Silver (Ag)	ug/L	<0.090	<0.090	0.090	7256889
Dissolved Sodium (Na)	ug/L	20000	26000	100	7256889
Dissolved Strontium (Sr)	ug/L	310	340	1.0	7256889
Dissolved Thallium (TI)	ug/L	<0.050	<0.050	0.050	7256889
Dissolved Titanium (Ti)	ug/L	<5.0	<5.0	5.0	7256889
Dissolved Uranium (U)	ug/L	0.66	0.26	0.10	7256889
Dissolved Vanadium (V)	ug/L	<0.50	<0.50	0.50	7256889
Dissolved Zinc (Zn)	ug/L	<5.0	<5.0	5.0	7256889

RCAP - COMPREHENSIVE (LAB FILTERED)

Page 5 of 17

Bureau Ventas Laboratories 6740 Campobelin Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

BV Labs ID		PCN804		
Sampling Date	1.1	2021/03/17	1	H
COC Number	1	817256-01-01		100
	UNITS	SW1	RDL	QC Batch
Calculated Parameters				
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	310	1.0	7254542
Calculated TDS	mg/L	450	1.0	7255604
Carb. Alkalinity (calc. as CaCO3)	mg/L	2.7	1.0	7254542
Hardness (CaCO3)	mg/L	360	1.0	7254512
Langelier Index (@ 20C)	N/A	1.04	1	7255602
Langelier Index (@ 4C)	N/A	0.794		7255603
Saturation pH (@ 20C)	N/A	6.92		7255602
Saturation pH (@ 4C)	N/A	7.16		7255603
Inorganics				
Total Ammonia-N	mg/L	<0.050	0.050	7256890
Conductivity	umho/cm	830	1.0	7256367
Total Organic Carbon (TOC)	mg/L	3.8	0.40	7256983
Orthophosphate (P)	mg/L	<0.010	0.010	7256525
pH	pH	7.96	11000	7256369
Total Phosphorus	mg/L	0.014	0.004	7259451
Dissolved Sulphate (SO4)	mg/L	23	1.0	7256524
Turbidity	NTU	1.6	0.1	7256493
Alkalinity (Total as CaCO3)	mg/L	320	1.0	7256364
Dissolved Chloride (Cl-)	mg/L	59	1.0	7256520
Nitrite (N)	mg/L	<0.010	0.010	7256379
Nitrate (N)	mg/L	<0.10	0.10	7256379
Metals		Accession and and a		
Dissolved Calcium (Ca)	mg/L	110	0.05	7254919
Dissolved Magnesium (Mg)	mg/L	21	0.05	7254919
Dissolved Potassium (K)	mg/L	2	1	7254919
Dissolved Sodium (Na)	mg/L	35	0.5	7254919
Total Aluminum (Al)	ug/L	9.0	4.9	7260294
Total Antimony (Sb)	ug/L	<0.50	0.50	7260294
Total Arsenic (As)	ug/L	<1.0	1.0	7260294
Total Barium (Ba)	ug/L	77	2.0	7260294
Total Beryllium (Be)	ug/L	<0.40	0.40	7260294
Total Boron (B)	ug/L	22	10	7260294

RCAP - SURFACE WATER (WATER)

Page 6 of 17

Bureau Ventas Laboratories 6740 Campobelin Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

BV Labs ID		PCN804		1
Sampling Date		2021/03/17	li se i i	1
COC Number		817256-01-01	4 11 1	1.00
	UNITS	SW1	RDL	QC Batch
Total Cadmium (Cd)	ug/L	<0.090	0.090	7260294
Total Calcium (Ca)	ug/L	110000	200	7260294
Total Chromium (Cr)	ug/L	<5.0	5.0	7260294
Total Cobalt (Co)	ug/L	<0.50	0.50	7260294
Total Copper (Cu)	ug/L	<0.90	0.90	7260294
Total Iron (Fe)	ug/L	310	100	7260294
Total Lead (Pb)	ug/L	<0.50	0.50	7260294
Total Magnesium (Mg)	ug/L	21000	50	7260294
Total Manganese (Mn)	ug/L	49	2.0	7260294
Total Molybdenum (Mo)	ug/L	<0.50	0.50	7260294
Total Nickel (Ni)	ug/L	<1.0	1.0	7260294
Total Potassium (K)	ug/L	1700	200	7260294
Total Selenium (Se)	ug/L	<2.0	2.0	7260294
Total Silicon (Si)	ug/L	4500	50	7260294
Total Silver (Ag)	ug/L	<0.090	0.090	7260294
Total Sodium (Na)	ug/L	34000	100	7260294
Total Strontium (Sr)	ug/L	350	1.0	7260294
Total Thallium (Tl)	ug/L	<0.050	0.050	7260294
Total Titanium (Ti)	ug/L	<5.0	5.0	7260294
Total Vanadium (V)	ug/L	<0.50	0.50	7260294
Total Zinc (Zn)	ug/L	<5.0	5.0	7260294

RCAP - SURFACE WATER (WATER)

Page 7 of 17

Bureau Ventas Laboratories 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

BV Labs ID		PCN804		
Sampling Date	1	2021/03/17		
COC Number		817256-01-01		
	UNITS	SW1	RDL	QC Batch
Metals				
Dissolved Aluminum (AI)	ug/L	<4.9	4.9	7256889
Dissolved Antimony (Sb)	ug/L	<0.50	0.50	7256889
Dissolved Arsenic (As)	ug/L	<1.0	1.0	7256889
Dissolved Barium (Ba)	ug/L	76	2.0	7256889
Dissolved Beryllium (Be)	ug/L	<0.40	0.40	7256889
Dissolved Bismuth (Bi)	ug/L	<1.0	1.0	7256889
Dissolved Boron (B)	ug/L	26	10	7256889
Dissolved Cadmium (Cd)	ug/L	<0.090	0.090	7256889
Dissolved Calcium (Ca)	ug/L	110000	200	7256889
Dissolved Chromium (Cr)	ug/L	<5.0	5.0	7256889
Dissolved Cobalt (Co)	ug/L	<0.50	0.50	7256889
Dissolved Copper (Cu)	ug/L	<0.90	0.90	7256889
Dissolved Iron (Fe)	ug/L	<100	100	7256889
Dissolved Lead (Pb)	ug/L	<0.50	0.50	7256889
Dissolved Lithium (Li)	ug/L	<5.0	5.0	7256889
Dissolved Magnesium (Mg)	ug/L	21000	50	7256889
Dissolved Manganese (Mn)	ug/L	45	2.0	7256889
Dissolved Molybdenum (Mo)	ug/L	<0.50	0.50	7256889
Dissolved Nickel (Ni)	ug/L	<1.0	1.0	7256889
Dissolved Phosphorus (P)	ug/L	<100	100	7256889
Dissolved Potassium (K)	ug/L	1700	200	7256889
Dissolved Selenium (Se)	ug/L	<2.0	2.0	7256889
Dissolved Silicon (Si)	ug/L	4700	50	7256889
Dissolved Silver (Ag)	ug/L	<0.090	0.090	7256889
Dissolved Sodium (Na)	ug/L	34000	100	7256889
Dissolved Strontium (Sr)	ug/L	340	1.0	7256889
Dissolved Tellurium (Te)	ug/L	<1.0	1.0	7256889
Dissolved Thallium (TI)	ug/L	<0.050	0.050	7256889
Dissolved Tin (Sn)	ug/L	<1.0	1.0	7256889
Dissolved Titanium (Ti)	ug/L	<5.0	5.0	7256889
Dissolved Tungsten (W)	ug/L	<1.0	1.0	7256889
Dissolved Uranium (U)	ug/L	0.63	0.10	7256889

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

Page 8 of 17

Bureau Ventas Laboratories 6740 Campobelio Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

1/03/17 256-01-01 SW1	RDL	QC Batch
256-01-01 SW1	RDL	QC Batch
SW1	RDL	QC Batch
<0.50	0.50	7256889
<5.0	5.0	7256889
<1.0	1.0	7256889
	<5.0 <1.0	<5.0 5.0 <1.0 1.0

Page 9 of 17

Bureau Ventas Laboratories 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bviats.com

TEST SUMMARY

BV Labs ID:	PCN802	Collected:	2021/03/17
Sample ID:	MW3B	Shipped:	
Matrix:	Water	Received:	2021/03/17

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	7256364	N/A	2021/03/19	Surinder Rai
Carbonate, Bicarbonate and Hydroxide	CALC	7254542	N/A	2021/03/22	Automated Statchk
Chloride by Automated Colourimetry	KONE	7256520	N/A	2021/03/23	Deonarine Ramnarine
Conductivity	AT	7256367	N/A.	2021/03/19	Surinder Rai
Dissolved Organic Carbon (DOC)	TOCV/NDIR	7256881	N/A	2021/03/19	Nimarta Singh
Hardness (calculated as CaCO3)		7254512	N/A	2021/03/23	Automated Statchk
Lab Filtered Metals by ICPMS	ICP/MS	7256889	2021/03/19	2021/03/23	Nan Raykha
Ion Balance (% Difference)	CALC	7255095	N/A	2021/03/23	Automated Statchk
Anion and Cation Sum	CALC	7255601	N/A	2021/03/23	Automated Statchk
Total Ammonia-N	LACH/NH4	7256954	N/A	2021/03/22	Alina Dobreanu
Nitrate (NO3) and Nitrite (NO2) in Water	LACH	7256379	N/A	2021/03/19	Chandra Nandlal
рН	AT	7256369	2021/03/19	2021/03/19	Surinder Rai
Orthophosphate	KONE	7256525	N/A	2021/03/22	Avneet Kour Sudan
Sat. pH and Langelier Index (@ 20C)	CALC	7255602	N/A	2021/03/23	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	7255603	N/A	2021/03/23	Automated Statchk
Sulphate by Automated Colourimetry	KONE	7256524	N/A	2021/03/22	Avneet Kour Sudan
Total Dissolved Solids (TDS calc)	CALC	7255604	N/A	2021/03/23	Automated Statchk

BV Labs ID: PCN803 Sample ID: MW3A Matrix: Water Collected: 2021/03/17 Shipped: Received: 2021/03/17

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	7256364	N/A	2021/03/19	Surinder Rai
Carbonate, Bicarbonate and Hydroxide	CALC	7254542	N/A	2021/03/22	Automated Statchk
Chloride by Automated Colourimetry	KONE	7256520	N/A	2021/03/23	Deonarine Ramnarine
Conductivity	AT	7256367	N/A	2021/03/19	Surinder Rai
Dissolved Organic Carbon (DOC)	TOCV/NDIR	7256881	N/A	2021/03/19	Nimarta Singh
Hardness (calculated as CaCO3)		7254512	N/A	2021/03/23	Automated Statchk
Lab Filtered Metals by ICPMS	ICP/MS	7256889	2021/03/19	2021/03/22	Nan Raykha
Ion Balance (% Difference)	CALC	7255095	N/A	2021/03/23	Automated Statchk
Anion and Cation Sum	CALC	7255601	N/A	2021/03/23	Automated Statchk
Total Ammonia-N	LACH/NH4	7256954	N/A	2021/03/22	Alina Dobreanu
Nitrate (NO3) and Nitrite (NO2) in Water	LACH	7256379	N/A	2021/03/19	Chandra Nandlal
pH	AT	7256369	2021/03/19	2021/03/19	Surinder Rai
Orthophosphate	KONE	7256525	N/A	2021/03/22	Avneet Kour Sudan
Sat. pH and Langelier Index (@ 20C)	CALC	7255602	N/A	2021/03/23	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	7255603	N/A	2021/03/23	Automated Statchk
Sulphate by Automated Colourimetry	KONE	7256524	N/A	2021/03/22	Avneet Kour Sudan
Total Dissolved Solids (TDS calc)	CALC	7255604	N/A	2021/03/23	Automated Statchk

Page 10 of 17

Bureau Ventas Laboratories 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

TEST SUMMARY

BV Labs ID:	PCN804	Collected:	2021/03/17
Sample ID:	SW1	Shipped:	
Matrix:	Water	Received:	2021/03/17

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	7256364	N/A	2021/03/19	Surinder Rai
Carbonate, Bicarbonate and Hydroxide	CALC	7254542	N/A	2021/03/22	Automated Statchk
Chloride by Automated Colourimetry	KONE	7256520	N/A	2021/03/23	Deonarine Ramnarine
Conductivity	AT	7256367	N/A.	2021/03/19	Surinder Rai
Hardness (calculated as CaCO3)		7254512	N/A	2021/03/24	Automated Statchk
Lab Filtered Metals Analysis by ICP	ICP	7254919	2021/03/19	2021/03/23	Suban KanapathippIlai
Lab Filtered Metals by ICPMS	ICP/MS	7256889	2021/03/19	2021/03/22	Nan Raykha
Total Metals Analysis by ICPMS	ICP/MS	7260294	N/A	2021/03/22	Daniel Teclu
Total Ammonia-N	LACH/NH4	7256890	N/A	2021/03/22	Alina Dobreanu
Nitrate (NO3) and Nitrite (NO2) in Water	LACH	7256379	N/A	2021/03/19	Chandra Nandlal
рН	AT	7256369	2021/03/19	2021/03/19	Surinder Rai
Orthophosphate	KONE	7256525	N/A	2021/03/22	Avneet Kour Sudan
Sat. pH and Langelier Index (@ 20C)	CALC	7255602	N/A	2021/03/24	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	7255603	N/A	2021/03/24	Automated Statchk
Sulphate by Automated Colourimetry	KONE	7256524	N/A	2021/03/22	Avneet Kour Sudan
Total Dissolved Solids (TDS calc)	CALC	7255604	N/A	2021/03/24	Automated Statchk
Total Organic Carbon (TOC)	TOCV/NDIR	7256983	N/A	2021/03/20	Nimarta Singh
Total Phosphorus (Colourimetric)	LACH/P	7259451	2021/03/22	2021/03/24	Shivani Shivani
Turbidity	AT	7256493	N/A	2021/03/19	Neil Dassanayake

Total Phosphorus (Colou	rimetric)	LACH/P	7259451	2021/03/22	2021/03/24	Shivani Sh	Ivani	
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst		
Matrix:	Water					Received:	2021/03/17	
BV Labs ID: Sample ID:	PCN804 Dup SW1					Collected: Shipped:	2021/03/17	
Division in the	DCHIOO I D					a House A	2024 /02/47	

Page 11 of 17

Bureau Ventas Laboratories 6740 Campobelio Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1	5.3°C

Results relate only to the items tested.

Page 12 of 17

Bureau Ventas Laboratories 6740 Campobello Road, Missisauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

QUALITY ASSURANCE REPORT

exp Services Inc Client Project #: KCH-00260285-A0 Site Location: 1470 Highbury Avenue Sampler Initials: M.B

			Matrix Spike		SPIKED BLANK		Method Blank		RPD		QC Standard	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
7254919	Dissolved Calcium (Ca)	2021/03/23	64 (1)	80 - 120	97	80 - 120	<0.05	mg/L	0.42	25		
7254919	Dissolved Magnesium (Mg)	2021/03/23	91	80 - 120	97	80 - 120	<0.05	mg/L	0.060	25		
7254919	Dissolved Potassium (K)	2021/03/23	96	80 - 120	96	80 - 120	<1	mg/L	0.10	25		
7254919	Dissolved Sodium (Na)	2021/03/23	83	80 - 120	96	80 - 120	<0.5	mg/L	0.10	25		
7256364	Alkalinity (Total as CaCO3)	2021/03/19			92	85 - 115	<1.0	mg/L	0.26	20	1	
7256367	Conductivity	2021/03/19			102	85 - 115	<1.0	umho/c m	0.78	25		
7256369	рН	2021/03/19			102	98 - 103			0.18	N/A		
7256379	Nitrate (N)	2021/03/19	98	80 - 120	99	80 - 120	<0.10	mg/L	6.6	20		
7256379	Nitrite (N)	2021/03/19	104	80 - 120	105	80 - 120	<0.010	mg/L	4.4	20		
7256493	Turbidity	2021/03/19			98	85 - 115	<0.1	NTU	2.7	20		
7256520	Dissolved Chloride (Cl-)	2021/03/23	118	80 - 120	103	80 - 120	<1.0	mg/L	1.6	20		
7256524	Dissolved Sulphate (SO4)	2021/03/22	111	75 - 125	101	80 - 120	<1.0	mg/L	0.0015	20		
7256525	Orthophosphate (P)	2021/03/22	112	75 - 125	102	80 - 120	<0.010	mg/L	17	25		
7256881	Dissolved Organic Carbon	2021/03/19	92	80 - 120	99	80 - 120	<0.40	mg/L	2.3	20		
7256889	Dissolved Aluminum (Al)	2021/03/22	104	80 - 120	99	80 - 120	<4.9	ug/L				
7256889	Dissolved Antimony (Sb)	2021/03/22	106	80 - 120	101	80 - 120	<0.50	ug/L	NC	20		
7256889	Dissolved Arsenic (As)	2021/03/22	97	80 - 120	97	80 - 120	<1.0	ug/L				
7256889	Dissolved Barium (Ba)	2021/03/22	101	80 - 120	100	80 - 120	<2.0	ug/L				
7256889	Dissolved Beryllium (Be)	2021/03/22	98	80 - 120	99	80 - 120	<0.40	ug/L	NC	20		
7256889	Dissolved Bismuth (Bi)	2021/03/22	89	80 - 120	99	80 - 120	<1.0	ug/L				
7256889	Dissolved Boron (B)	2021/03/22	98	80 - 120	95	80 - 120	<10	ug/L	2.8	20		
7256889	Dissolved Cadmium (Cd)	2021/03/22	99	80 - 120	99	80 - 120	<0.090	ug/L				
7256889	Dissolved Calcium (Ca)	2021/03/22	121 (1)	80 - 120	97	80 - 120	<200	ug/L				
7256889	Dissolved Chromium (Cr)	2021/03/22	98	80 - 120	97	80 - 120	<5.0	ug/L				
7256889	Dissolved Cobalt (Co)	2021/03/22	97	80 - 120	99	80 - 120	<0.50	ug/L	NC	20		
7256889	Dissolved Copper (Cu)	2021/03/22	104	80 - 120	101	80 - 120	<0.90	ug/L	0	20		
7256889	Dissolved Iron (Fe)	2021/03/22	96	80 - 120	97	80 - 120	<100	ug/L				
7256889	Dissolved Lead (Pb)	2021/03/22	91	80 - 120	97	80 - 120	<0.50	ug/L	NC	20		
7256889	Dissolved Lithium (Li)	2021/03/22	NC	80 - 120	104	80 - 120	<5.0	ug/L				
7256889	Dissolved Magnesium (Mg)	2021/03/22	101	80 - 120	98	80 - 120	<50	ug/L		Ĩ		

Page 13 of 17

Bureau Veritas Laboratories 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toli-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

QUALITY ASSURANCE REPORT(CONT'D)

exp Services Inc Client Project #: KCH-00260285-A0 Site Location: 1470 Highbury Avenue Sampler Initials: M.B

			Matrix	Spike	SPIKED	BLANK	Method	Blank	RPI	D	QC Sta	undard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
7256889	Dissolved Manganese (Mn)	2021/03/22	99	80 - 120	99	80 - 120	<2.0	ug/L				
7256889	Dissolved Molybdenum (Mo)	2021/03/22	107	80 - 120	101	80 - 120	<0.50	ug/L	1.6	20		
7256889	Dissolved Nickel (Ni)	2021/03/22	93	80 - 120	96	80 - 120	<1.0	ug/L	NC	20		
7256889	Dissolved Phosphorus (P)	2021/03/22	114	80 - 120	105	80 - 120	<100	ug/L				
7256889	Dissolved Potassium (K)	2021/03/22	105	80 - 120	102	80 - 120	<200	ug/L				
7256889	Dissolved Selenium (Se)	2021/03/22	94	80 - 120	97	80 - 120	<2.0	ug/L				
7256889	Dissolved Silicon (Si)	2021/03/22	107	80 - 120	100	80 - 120	<50	ug/L				
7256889	Dissolved Silver (Ag)	2021/03/22	96	80 - 120	99	80 - 120	<0.090	ug/L				
7256889	Dissolved Sodium (Na)	2021/03/22	NC	80 - 120	96	80 - 120	<100	ug/L	1.1	20		
7256889	Dissolved Strontium (Sr)	2021/03/22	75 (1)	80 - 120	98	80 - 120	<1.0	ug/L				
7256889	Dissolved Tellurium (Te)	2021/03/22	100	80 - 120	100	80 - 120	<1.0	ug/L				
7256889	Dissolved Thallium (TI)	2021/03/22	92	80 - 120	98	80 - 120	<0.050	ug/L				
7256889	Dissolved Tin (Sn)	2021/03/22	104	80 - 120	101	80 - 120	<1.0	ug/L				
7256889	Dissolved Titanium (Ti)	2021/03/22	102	80 - 120	97	80 - 120	<5.0	ug/L				
7256889	Dissolved Tungsten (W)	2021/03/22	97	80 - 120	97	80 - 120	<1.0	ug/L				
7256889	Dissolved Uranium (U)	2021/03/22	94	80 - 120	96	80 - 120	<0.10	ug/L				
7256889	Dissolved Vanadium (V)	2021/03/22	103	80 - 120	99	80 - 120	<0.50	ug/L	NC	20		
7256889	Dissolved Zinc (Zn)	2021/03/22	93	80 - 120	97	80 - 120	<5.0	ug/L				
7256889	Dissolved Zirconium (Zr)	2021/03/22	111	80 - 120	103	80 - 120	<1.0	ug/L				
7256890	Total Ammonia-N	2021/03/22	100	75 - 125	101	80 - 120	<0.050	mg/L	3.5	20		
7256954	Total Ammonia-N	2021/03/22	100	75 - 125	100	80 - 120	<0.050	mg/L	6.1	20		
7256983	Total Organic Carbon (TOC)	2021/03/19	99	80 - 120	96	80 - 120	<0.40	mg/L	5.2	20		
7259451	Total Phosphorus	2021/03/24	96	80 - 120	104	80 - 120	<0.004	mg/L	2.1	20	97	80 - 120
7260294	Total Aluminum (Al)	2021/03/22	162 (1)	80 - 120	100	80 - 120	<4.9	ug/L				
7260294	Total Antimony (Sb)	2021/03/22	104	80 - 120	102	80 - 120	<0.50	ug/L				
7260294	Total Arsenic (As)	2021/03/22	98	80 - 120	98	80 - 120	<1.0	ug/L				
7260294	Total Barium (Ba)	2021/03/22	98	80 - 120	100	80 - 120	<2.0	ug/L				
7260294	Total Beryllium (Be)	2021/03/22	105	80 - 120	104	80 - 120	<0.40	ug/L				
7260294	Total Boron (B)	2021/03/22	98	80 - 120	98	80 - 120	<10	ug/L				
7260294	Total Cadmium (Cd)	2021/03/22	100	80 - 120	101	80 - 120	<0.090	ug/L				
7260294	Total Calcium (Ca)	2021/03/22	91	80 - 120	98	80 - 120	<200	ug/L				

Page 14 of 17

Bureau Veritas Laboratories 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toli-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

Microbiology testing is conducted at 6660 Campobello Rd. Chemistry testing is conducted at 6740 Campobello Rd.

QUALITY ASSURANCE REPORT(CONT'D)

exp Services Inc Client Project #: KCH-00260285-A0 Site Location: 1470 Highbury Avenue Sampler Initials: M.B

			Matrix	Spike	SPIKED	BLANK	Method	Blank	RPI	D	QC Sta	ndard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
7260294	Total Chromium (Cr)	2021/03/22	97	80 - 120	98	80 - 120	<5.0	ug/L				
7260294	Total Cobalt (Co)	2021/03/22	96	80 - 120	99	80 - 120	<0.50	ug/L				
7260294	Total Copper (Cu)	2021/03/22	102	80 - 120	105	80 - 120	<0.90	ug/L				
7260294	Total Iron (Fe)	2021/03/22	96	80 - 120	98	80 - 120	<100	ug/L				
7260294	Total Lead (Pb)	2021/03/22	95	80 - 120	97	80 - 120	<0.50	ug/L				
7260294	Total Magnesium (Mg)	2021/03/22	94	80 - 120	102	80 - 120	<50	ug/L				
7260294	Total Manganese (Mn)	2021/03/22	95	80 - 120	99	80 - 120	<2.0	ug/L	1.8	20		
7260294	Total Molybdenum (Mo)	2021/03/22	103	80 - 120	101	80 - 120	<0.50	ug/L				
7260294	Total Nickel (Ni)	2021/03/22	94	80 - 120	97	80 - 120	<1.0	ug/L				
7260294	Total Potassium (K)	2021/03/22	103	80 - 120	103	80 - 120	<200	ug/L				
7260294	Total Selenium (Se)	2021/03/22	98	80 - 120	98	80 - 120	<2.0	ug/L				
7260294	Total Silicon (Si)	2021/03/22	100	80 - 120	97	80 - 120	<50	ug/L				
7260294	Total Silver (Ag)	2021/03/22	99	80 - 120	101	80 - 120	<0.090	ug/L				
7260294	Total Sodium (Na)	2021/03/22	86	80 - 120	102	80 - 120	<100	ug/L				
7260294	Total Strontium (Sr)	2021/03/22	102	80 - 120	97	80 - 120	<1.0	ug/L				
7260294	Total Thallium (Tl)	2021/03/22	98	80 - 120	99	80 - 120	<0.050	ug/L				
7260294	Total Titanium (Ti)	2021/03/22	105	80 - 120	94	80 - 120	<5.0	ug/L				
7260294	Total Vanadium (V)	2021/03/22	100	80 - 120	100	80 - 120	<0.50	ug/L				
7260294	Total Zinc (Zn)	2021/03/22	99	80 - 120	104	80 - 120	<5.0	ug/L				

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

(1) Recovery or RPD for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria.

Page 15 of 17

Bureau Veritas Laboratories 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

Microbiology testing is conducted at 6660 Campobello Rd. Chemistry testing is conducted at 6740 Campobello Rd.

exp Services Inc Client Project #: KCH-00260285-A0 Site Location: 1470 Highbury Avenue Sampler Initials: M.B

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Anastassia Hamanov, Scientific Specialist

Eno.

Ewa Pranjic, M.Sc., C.Chem, Scientific Specialist

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Page 16 of 17

Bureau Veritas Laboratories 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

Microbiology testing is conducted at 6660 Campobello Rd. Chemistry testing is conducted at 6740 Campobello Rd.

	IN IN	VOICE TO		1		REPC	RTTO				1		PROJEC	T INFORMAT	ION.			Laboratory Use (Only:
یند. رادر منبقی ک	*28124 exp Ser	vices Inc		Corres	Kianor						0		89171	8		1		BV Labs Job #:	Bottle Order #
Attend to	Accounts Payable	2		Atlent to	9,949.00		······			•••••	3 0 a								1 11/80181/11
Agress	15701 Robin's Hi	IRd Unit 2		A10/639	3						Project		KCH-0	0260285	A0				1.1.00001243334 83.1256
	London ON N5V	0A5									Project Nan	e						COC N.	Project Manage
Tei	(519) 963-3000)) 963-1152	101		:	Far				See #		14701	-lighbury A	venue		1.900		Transfer and the
i.ma	AP@exp.com_ka	ren Burke@exp.com.	Lo-Ellen Mit	on Fatal		Haadhart	In the second	<u> </u>	n - 19 - 1	<u>, </u>	Samolen By		<u></u>	Ser to	~ 5	Í		Cev11286-01-01	
MO	E REGULATED DRINKING	WATER OR WATER	INTENDED F	OR HUMAN C	CONSUMPTION	MUST BE	3.11	}		<u>, A1</u>	ALYSIS REG	UT STER.	PLEACE B	E GRECORIC:				Furnamend Time (TA1); B Please provide advence police in	egared e o sh ocoscia
	SUDMITTED	IN THE SV LASS DRIN	AVING ANU E		CUSTODY		ē	, (p. 6).		l					ļ	R	egular (Sta	andard) TAT:	
<u>ب</u>	egulation 153 (2011)	CAL CAL	her Regulations		Special In	istructions		12		1:				ĺ	1	Les.	int Nappied.	d Rush TAC is not specified.	
lated l	iRestrackModum	Hine COVE	Sor Hary Server Super Second Bu	SicăA Ch	1		Gr ase	147		1.					1	\$1	wingang TA T -	6-7 windong says the most best.	
1.000	Apalone For RS		status Le cue de series da				ard) i	allows to	2,22	1		ļ		ļ		14 di	eacerate St. 93 - contant y	anidard IA7 for Gerlan Susta Luch as 5 diur Project Managet for debailt	ing and Schema Foract a
1,004	······	- 10 00.44	Regi403 Table				ereo Is / I	107448	1 8						1		lob Specific I	Rush TAT (if applies to entire subm	visaion)
		Cane		·····			d F.d.	1.00	1 2	1						24	as-Require	7) -	in Reduced
	, Include Criteria	on Certificate of Analy	sis (Y/N)7				_ pr ≁	5		1 3	11	l l	.		.	R	us - Confirma	con sumbér	4: ¹¹ 80 1:7 8)
	Service Barrie 20 a 1924	Since and light on home	Nº 18 Ch	Gale Gordier	I ne Samoled	\$1.004	1	<u> </u>	4		<u> </u>					1 .	ar Binters	(lemin-	ents.
:	,	** <u>1,</u> */2		Real	51	GW		X)				5	a decisional di seri	
:		Pla Ch			1	GW	1		ļ								7		
3		1				SW	1			-							17	₹i.	
		* .	1			1								······					
									 +	ļ		Į				L			
=										-							····· ,	17-Mar-21 15	40
5			ĺ			Ì	1		i i)	ļ	(Infishing Gripton	
						ļ	+				· · · · · ·						••••••••••••••••••••••••••••••••••••••		
-						1						į						CT/2//4	
*						1	+	+	+	+	++-						v ç	ENV 1466	
3			i							1		Ì							
3					-	1	1			1									
						<u> </u> 	1		<u> </u>		+								
	BELINDUISHED BY 15	anature. Print:	* L Date (YV:MI	4000 T	lime	BECEIVED	AY (Signature)	Punt:	L	Date: IXX	מס אא	T		# jars use	d and 1		Lahorato	Cr.J /	<u>CÉ</u>
	1251	9.118.	2.0211	7 2	35 7	ter at	165	Th	1	2ite:	117	754	$\overline{\Omega}$	not subr	hitted Time is	ens.2.20	inconstant of	Custody St	val Yes
e de la composition de	and the second s		1	μ	the for the	117	at Desisk	1 J 110	14,17	5/2	11101	in the second	ें द	1			31	0.7. C 108401	
UNCESS	OTHERWISE AGREED TO IN WR	TING, WORK SUBMITTED O	N THIS CHAIN OF	CUSTODY IS SU	UBJECT TO BY LAD	S STANDARD TE	MS AND CONDI	TIONS. SH	GNING OF	THIS CHAI	N OF CUSTOR	YOGCUM	ENT IS					Winite, B	WLabs Yellov
ACKNOWL	EDGMENT AND ACCEPTANCE (OF DUR TERMS WHICH ARE	AVAILABLE FOR	VIEWING AT WW	W BYLABS COM/TE	RMS-AND-CONDI	HONS. CHAIN OF CUT 1	0000000	OF COLT 1	u ni 21 X Y 4	AL CATENCE	ve		5/	MPLES MUST BE	KEPT COOL	4 10" C) FR	IOM TIME OF SAMPLING	
		warange no keopetic (PE	HOUGHNUT OF	COMIN OF C	an an neomra	de formance (C.		551 TR1 /	auci in		and the proof					ONFIL DELIVE	ERY TO BY L	A95	

.

Appendix K – Water Balance Assessment

1:2,000

Image Source: Google Earth Pro (July 2018); City of London Digital Mapping (2017)

TABLE K1 - PRE-DEVELOPMENT WATER BALANCE CALCULATIONS

AREA 1 - Drains to North	Impervious Area (m ²)	Pervious Area (m ²)	Total Area (m ²)	Soil Type	Soil Group	Water Hold (m	ling Capacity nm)	Infiltration Factor	T _{rain} (°C)	T _{snow} (°C)	Meltmax (%/100)		
Urban Lav	vn 721	4,578	8,036	Fine Sand	А	ļ	50	0.8	3.3	-10.0	0.92		
Forested Are	ea O	2,737		Fine Sand	А	2	50	0.9					
			MAD		NAA 22	11.161			CED	067	NOV	DEC	Tatala
Average Temperature (°C)	JAN -5.6	-4 5	-0 1	6 8	IVIA I 12 1	JUN 18 2	20 8	AUG 10.7	3EP 15 5		3.4		lotais
Total Precipitation (mm/month)	-3.0	-4.5	-0.1	0.0 82 /	20.2	10.5 01 7	20.8	19.7	102.0	9.2 91 2	3.4 98.0	-2.0	1011 5
Precipitation as rain (mm/month)	74.2 24 5	05.5 27 1	53.2	83.4	89.8 89.8	91.7	82.7	82.9	103.0	81.5	98.0	48.7	1011.5
Precipitation as snow (mm/month)	24.5 49 7	38.4	18 3	0.0	0.0	0.0	0.0	0.0	105:0	0.0	0.0	38.8	
Potential Snow Melt (mm/month)	20.9	32.4	49.1	26.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	19.9	
Actual Snow Melt (mm/month)	20.9	32.0	49.1	20.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	19.9	
Snow Storage (mm/month)	47.7	53.4	22.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	18.9	
URBAN LAWN (Pervious Area)	8.0	10.0	20.2	20 /	70.2	102.6	100 1	02.7	F.C. 2	20 F	16.0	10.0	
Surplus (mm/month)	8.9 26 F	10.8	20.3	38.4 67.6	70.3 10 E	102.0	26.4	0.9	50.5 46 7	30.5 E0.9	10.0	10.0	550.9
Surplus (mm/month)	30.5 26 F	49.1	82.0	07.0 12 E	19.5	-10.9	-26.4	-0.8	40.7	50.8	82.0 16.4	58.0	454.0
Estimated Infiltration (mm/month)	30.5	49.1	49.2	13.J E/ 1	5.5 15 6	0.0	0.0	0.0	9.5 27 /	10.2	10.4	0.0	240.0
Estimated Actual Evanotranspiration (m ³ /month)	0.0	<u></u>	<u> </u>	176	322	470	<u> </u>	383	<u> </u>	140.0	73		240.1
Estimated Runoff (m ³ /month)	41	45 225	33 225	67	12	470	455	383	238 //2	140	75	40 269	1120
Estimated Infiltration (m ³ /month)	0	0	150	248	71	0	0	0	45 171	186	300	0	1125
Estimated Actual Evanetraponization (mm/month)	0 1	10.9	10 /	10 1	16.2	16 E	14.0	14.0	10 E	146	17.6	10.0	107 1
Surplus (mm/month)	0.2 27.2	10.8	18.4	19.1	10.Z	10.5 75 0	14.9	14.9	18.5 04 E	14.0	17.0	12.3	182.1
Surplus (IIIII/IIIOIIII)	57.2 27.2	49.1	83.9 82.0	00.9 96.0	73.0	75.2 75.2	67.0	68.0	04.J 01 E	66.7	80.4 80.4	50.2	029.4 920.4
Estimated Runon (mm/month)	57.2	49.1	0.0	0.9	/5.0	75.2	07.8	00.0	04.5	00.7	0.4	0.0	0.0
Estimated Actual Evanotranspiration (m ³ /month)	0.0		12	14	<u> </u>	12	0.0	11	12		12	<u> </u>	
Estimated Runoff (m ³ /month)	0 27	25	E0	62	52	54	10	10	15 61	11	52	у Л1	502
Estimated Infiltration (m ³ /month)	0	0	0	0	0	0 0	49 0	49 0	0	48	0	41	0
	Ū.	C C	Ū	Ū	· ·	·	Ū	Ū	C C	·	Ū	Ū	C C
FORESTED AREA													
Estimated Actual Evapotranspiration (mm/month)	8.9	10.8	20.3	38.4	70.3	102.6	116.8	92.2	56.3	30.5	16.0	10.0	573.1
Surplus (mm/month)	36.5	49.1	82.0	67.6	19.5	-10.9	-34.1	-9.3	46.7	50.8	82.0	58.6	438.4
Estimated Runoff (mm/month)	36.5	49.1	45.1	6.8	2.0	0.0	0.0	0.0	4.7	5.1	8.2	58.6	215.9
Estimated Infiltration (mm/month)	0.0	0.0	36.9	60.8	17.6	0.0	0.0	0.0	42.0	45.7	73.8	0.0	276.8
Estimated Actual Evapotranspiration (m ³ /month)	24	30	56	105	192	281	320	252	154	83	44	27	1569
Estimated Runoff (m ³ /month)	100	134	123	18	5	0	0	0	13	14	22	160	591
Estimated Infiltration (m ³ /month)	0	0	101	166	48	0	0	0	115	125	202	0	758
AREA 1 TOTALS													
Estimated Actual Evapotranspiration (m ³ /month)	71	87	162	295	526	762	830	646	425	234	130	82	4249
Estimated Runoff (m ³ /month)	294	394	409	143	76	54	49	49	116	108	155	469	2318
Estimated Infiltration (m ³ /month)	0	0	251	414	119	0	0	0	286	311	502	0	1884

AREA 2 - Drains to Pond	Impervious Area (m ²)	Pervious Area (m ²)	Total Area (m ²)	Soil Type	Soil Group	Water Holding Capacity (mm)		Infiltration Factor	T _{rain} (°C)	T _{snow} (°C)	Meltmax (%/100)		
Forested Area (do not include Pond as contibuting area) - 847 m2	0	7,092	7,092	Fine Sand	A	250		0.8	3.3	-10.0	0.92		
FORESTED AREA													
Initial Actual Evapotranspiration (mm/month)	8.9	10.8	20.3	38.4	70.3	102.6	116.8	92.2	56.3	30.5	16.0	10.0	573.1
Surplus (mm/month)	36.5	49.1	82.0	67.6	19.5	-10.9	-34.1	-9.3	46.7	50.8	82.0	58.6	438.4
Initial Runoff (mm/month)	36.5	49.1	49.2	13.5	3.9	0.0	0.0	0.0	9.3	10.2	16.4	58.6	246.6
Estimated Infiltration (mm/month)	0.0	0.0	32.8	54.1	15.6	0.0	0.0	0.0	37.4	40.6	65.6	0.0	246.1
Estimated Actual Evapotranspiration (m ³ /month)	63	77	144	272	499	728	828	654	399	216	113	71	4064
Estimated Runoff (m ³ /month)	259	348	349	96	28	0	0	0	66	72	116	415	1749
Estimated Infiltration (m ³ /month)	0	0	233	383	111	0	0	0	265	288	465	0	1745
AREA 2 TOTALS													
Estimated Actual Evapotranspiration (m ³ /month)	63	77	144	272	499	728	828	654	399	216	113	71	4064
Estimated Runoff (m ³ /month)	259	348	349	96	28	0	0	0	66	72	116	415	1749
Estimated Infiltration (m ³ /month)	0	0	233	383	111	0	0	0	265	288	465	0	1745

TABLE K2 - POST-DEVELOPMENT WATER BALANCE CALCULATIONS

AREA 1 - Proposed Development Area	Impervious Area (m ²)	Pervious Area (m ²)	Total Area (m ²)	Soil Type	Soil Group	Water Hold (m	ing Capacity m)	Infiltration Factor	T _{rain} (°C)	T _{snow} (°C)	Meltmax (%/100)		
Urban Lawn	0	1728	8036	Fine Sand	А	5	50	0.8	3.3	-10.0	0.92		
Impervious Surfaces	6308	0											
	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	Totals
Average Temperature (°C)	-5.6	-4.5	-0.1	6.8	13.1	18.3	20.8	19.7	15.5	9.2	3.4	-2.6	
Total Precipitation (mm/month)	74.2	65.5	71.5	83.4	89.8	91.7	82.7	82.9	103.0	81.3	98.0	87.5	1011.5
Precipitation as rain (mm/month)	24.5	27.1	53.2	83.4	89.8	91.7	82.7	82.9	103.0	81.3	98.0	48.7	
Precipitation as snow (mm/month)	49.7	38.4	18.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	38.8	
Potential Snow Melt (mm/month)	20.9	32.8	49.1	26.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	19.9	
Actual Snow Melt (mm/month)	20.9	32.8	49.1	22.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	19.9	
Snow Storage (mm/month)	47.7	53.4	22.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	18.9	
URBAN LAWN													
Estimated Actual Evapotranspiration (mm/month)	8.9	10.8	20.3	38.4	70.3	102.6	109.1	83.7	56.3	30.5	16.0	10.0	556.9
Surplus (mm/month)	36.5	49.1	82.0	67.6	19.5	-10.9	-26.4	-0.8	46.7	50.8	82.0	58.6	454.6
Estimated Runoff (mm/month)	36.5	49.1	49.2	13.5	3.9	0.0	0.0	0.0	9.3	10.2	16.4	58.6	246.6
Estimated Infiltration (mm/month)	0.0	0.0	32.8	54.1	15.6	0.0	0.0	0.0	37.4	40.6	65.6	0.0	246.1
Estimated Actual Evapotranspiration (m ³ /month)	15	19	35	66	121	177	188	145	97	53	28	17	962
Estimated Runoff (m ³ /month)	63	85	85	23	7	0	0	0	16	18	28	101	426
Estimated Infiltration (m ³ /month)	0	0	57	93	27	0	0	0	65	70	113	0	425
Impervious Surfaces													
Estimated Actual Evapotranspiration (mm/month)	8.2	10.8	18.4	19.1	16.2	16.5	14.9	14.9	18.5	14.6	17.6	12.3	182.1
Estimated Runoff (mm/month)	37.2	49.1	83.9	86.9	73.6	75.2	67.8	68.0	84.5	66.7	80.4	56.2	829.4
Estimated Infiltration (mm/month)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Estimated Actual Evapotranspiration (m ³ /month)	52	68	116	120	102	104	94	94	117	92	111	78	1148.5
Estimated Runoff (m ³ /month)	235	310	529	548	465	474	428	429	533	421	507	355	5232.3
Estimated Infiltration (m ³ /month)	0	0	0	0	0	0	0	0	0	0	0	0	0.0
AREA 1 TOTALS													
Estimated Actual Evapotranspiration (m ⁻ /month)	67	87	151	187	223	281	282	239	214	145	139	95	2111
Estimated Runoff (m [°] /month)	298	394	614	572	471	474	428	429	549	438	535	456	5658
Estimated Infiltration (m [°] /month)	0	0	57	93	27	0	0	0	65	70	113	0	425

AREA 2 - Area Draining to Pond	Impervious Area (m ²)	Pervious Area (m ²)	Total Area (m²)	Soil Type	Soil Group	Water Holding Capacity (mm)		Infiltration Factor	T _{rain} (°C)	T _{snow} (°C)	Meltmax (%/100)		
Grassed Landscaped Areas Impermeable Surfaces (Rooftops and Pavements	s 0)	7,092	7,092	Fine Sand	A	250		0.8	3.3	-10.0	0.92		
Area Draining to Pond													
Initial Actual Evapotranspiration (mm/month)	8.9	10.8	20.3	38.4	70.3	102.6	116.8	92.2	56.3	30.5	16.0	10.0	573.1
Surplus (mm/month)	36.5	49.1	82.0	67.6	19.5	-10.9	-34.1	-9.3	46.7	50.8	82.0	58.6	438.4
Initial Runoff (mm/month)	36.5	49.1	49.2	13.5	3.9	0.0	0.0	0.0	9.3	10.2	16.4	58.6	246.6
Estimated Infiltration (mm/month)	0.0	0.0	32.8	54.1	15.6	0.0	0.0	0.0	37.4	40.6	65.6	0.0	246.1
Estimated Actual Evapotranspiration (m ³ /month)	63	77	144	272	499	728	828	654	399	216	113	71	4064
Estimated Runoff (m ³ /month)	259	348	349	96	28	0	0	0	66	72	116	415	1749
Estimated Infiltration (m ³ /month)	0	0	233	383	111	0	0	0	265	288	465	0	1745
AREA 2 TOTALS													
Estimated Actual Evapotranspiration (m ³ /month)	63	77	144	272	499	728	828	654	399	216	113	71	4064
Estimated Runoff (m ³ /month)	259	348	349	96	28	0	0	0	66	72	116	415	1749
Estimated Infiltration (m ³ /month)	0	0	233	383	111	0	0	0	265	288	465	0	1745
With Mitigation:													
Estimated Runoff	m ³ /year		3395										
Estimated Infiltration	m³/year		1557										
Runoff reduction			0.4										
Effectiveness			0.5										

TABLE K3 - WATER BALANCE SUMMARY

AREA 1 - Drains to North (PRE-DEVELOPMENT)											
	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV
AREA 1 TOTALS											
Estimated Actual Evapotranspiration (m3/month)	71	87	162	295	526	762	830	646	425	234	130
Estimated Runoff (m3/month)	294	394	409	143	76	54	49	49	116	108	155
Estimated Infiltration (m3/month)	0	0	251	414	119	0	0	0	286	311	502

AREA 1 - Drains to North - Development Area (POST-DEVELOPMENT)

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV
AREA 1 TOTALS											
Estimated Actual Evapotranspiration (m3/month)	67	87	151	187	223	281	282	239	214	145	139
Estimated Runoff (m3/month)	298	394	614	572	471	474	428	429	549	438	535
Estimated Infiltration (m3/month)	0	0	57	93	27	0	0	0	65	70	113

AREA 2 - Drains to Pond (DOES NOT CHANGE)

· · · · · · · · · · · · · · · · · · ·											
	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV
Estimated Actual Evapotranspiration (m ³ /month)	63	77	144	272	499	728	828	654	399	216	113
Estimated Runoff (m ³ /month)	259	348	349	96	28	0	0	0	66	72	116
Estimated Infiltration (m ³ /month)	0	0	233	383	111	0	0	0	265	288	465

AREA 1 TOTALS	PRE	POST	VOL CHANGE	% CHANGE	Post Mitigation	% Difference with Mitigation
Estimated Runoff (m3/year)	1720	5658	3,938	229%	3395	197%
Estimated Infiltration (m3/year)	1884	425	(1,459)	-77%	1557	83%

DEC	Totals
82	4118
469	1720
0	1884

DEC	Totals
95	2111
456	5658
0	425

DEC	Totals
71	4064
415	1749
0	1745

Monthly Water Balance

TABLE K4 - WATER BALANCE ASSUMPTIONS

- 1. AET occurs year round. Although the average temperature is below 0°C in the winter months, fluctuation above and below the freezing temperature of water occurs. The Thornthwaite model used assumes Train = 3.3°C and Tsnow = -10.0°C. When the average monthly temperature falls between these values, the monthly precipitation as rain and snow is derived by assuming a linear interpolation between these values, consistent with the methodology used in the accepted USGS reference material (McCabe, G.J., and Markstrom, S.L., 2007, A monthly water-balance model driven by a graphical use interface: U.S. Geological Survey Open-File report 2007-1088, 6 p.). Values of AET were taken from the Thornthwaite model and are considered to be representative of actual site conditions.
- 2. Monthly surplus is calculated by summing the precipitation as rain and actual snow melt, less estimated evapotranspiration.
- 3. Negative surplus values can be achieved during the summer months as water storage is the vadose zone of the soil is subject to evapotranspiration and depleted.
- 4. Infiltration is assumed not to occur between December and February as frost is typically present throughout those months.
- 5. Infiltration in March (Average temperature of -0.1°C), is assumed to occur during half of the month.
- 6. No net infiltration or runoff occur in the summer as the rainfall accumulation is stored on site and infiltration was not assigned a negative value. See Assumption 3.
- 7. Evapotranspiration in impervious areas is the sum of precipitation as rain and snow melt multiplied by a factor of 0.18.
- 8. Mitigation measures include the redirection of 40% of runoff to LID features

LIMITATIONS AND USE OF REPORT

BASIS OF REPORT

This report ("Report") is based on site conditions known or inferred by the hydrogeological investigation undertaken as of the date of the Report. Should changes occur which potentially impact the hydrogeological condition of the site, or if construction is implemented more than one year following the date of the Report, the recommendations of EXP may require re-evaluation.

The Report is provided solely for the guidance of design engineers and on the assumption that the design will be in accordance with applicable codes and standards. Any changes in the design features which potentially impact the geotechnical analyses or issues concerning the geotechnical aspects of applicable codes and standards will necessitate a review of the design by EXP. Additional field work and reporting may also be required.

Where applicable, recommended field services are the minimum necessary to ascertain that construction is being carried out in general conformity with building code guidelines, generally accepted practices and EXP's recommendations. Any reduction in the level of services recommended will result in EXP providing qualified opinions regarding the adequacy of the work. EXP can assist design professionals or contractors retained by the Client to review applicable plans, drawings, and specifications as they relate to the Report or to conduct field reviews during construction.

Contractors contemplating work on the site are responsible for conducting an independent investigation and interpretation of the test pit results contained in the Report. The number of test pits necessary to determine the localized underground conditions as they impact construction costs, techniques, sequencing, equipment and scheduling may be greater than those carried out for the purpose of the Report.

Classification and identification of soils, rocks, geological units, contaminant materials, building envelopment assessments, and engineering estimates are based on investigations performed in accordance with the standard of care set out below and require the exercise of judgment. As a result, even comprehensive sampling and testing programs implemented with the appropriate equipment by experienced personnel may fail to locate some conditions. All investigations or building envelope descriptions involve an inherent risk that some conditions will not be detected. All documents or records summarizing investigations are based on assumptions of what exists between the actual points sampled. Actual conditions may vary significantly between the points investigated. Some conditions are subject to change over time. The Report presents the conditions or requirements, these should be disclosed to EXP to allow for additional or special investigations to be undertaken not otherwise within the scope of investigation conducted for the purpose of the Report.

RELIANCE ON INFORMATION PROVIDED

The evaluation and conclusions contained in the Report are based on conditions in evidence at the time of site inspections and information provided to EXP by the Client and others. The Report has been prepared for the specific site, development, building, design or building assessment objectives and purpose as communicated by the Client. EXP has relied in good faith upon such representations, information and instructions and accepts no responsibility for any deficiency, misstatement or inaccuracy contained in the Report as a result of any misstatements, omissions, misrepresentation or fraudulent acts of persons providing information. Unless specifically stated otherwise, the applicability and reliability of the findings, recommendations, suggestions or opinions expressed in the Report are only valid to the extent that there has been no material alteration to or variation from any of the information provided to EXP.

STANDARD OF CARE

The Report has been prepared in a manner consistent with the degree of care and skill exercised by engineering consultants currently practicing under similar circumstances and locale. No other warranty, expressed or implied, is made. Unless specifically stated otherwise, the Report does not contain environmental consulting advice.

COMPLETE REPORT

All documents, records, data and files, whether electronic or otherwise, generated as part of this assignment form part of the Report. This material includes, but is not limited to, the terms of reference given to EXP by its client ("Client"), communications between EXP and the Client, other reports, proposals or documents prepared by EXP for the Client in connection with the site described in the Report. In order to properly understand the suggestions, recommendations and opinions expressed in the Report, reference must be made to the Report in its entirety. EXP is not responsible for use by any party of portions of the Report.

USE OF REPORT

The information and opinions expressed in the Report, or any document forming part of the Report, are for the sole benefit of the Client. No other party may use or rely upon the Report in whole or in part without the written consent of EXP. Any use of the Report, or any portion of the Report, by a third party are the sole responsibility of such third party. EXP is not responsible for damages suffered by any third party resulting from unauthorized use of the Report.

REPORT FORMAT

Where EXP has submitted both electronic file and a hard copy of the Report, or any document forming part of the Report, only the signed and sealed hard copy shall be the original documents for record and working purposes. In the event of a dispute or discrepancy, the hard copy shall govern. Electronic files transmitted by EXP have utilize specific software and hardware systems. EXP makes no representation about the compatibility of these files with the Client's current or future software and hardware systems. Regardless of format, the documents described herein are EXP's instruments of professional service and shall not be altered without the written consent of EXP.

Legal Notification

This report was prepared by EXP Services Inc. for the exclusive use of **Copia Developments** and may not be reproduced in whole or in part, or used or relied upon in whole or in part by any party other than **Copia Developments** for any purpose whatsoever without the express permission of **Copia Developments** in writing.

Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. EXP Services Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions taken based on this report.

